Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 990-997.DOI: 10.16085/j.issn.1000-6613.2021-1358
• Resources and environmental engineering • Previous Articles Next Articles
LIU Feng1,2(), ZHANG Xuezhi1, WANG Suqin1, FENG Zhen1, GE Dandan1, YANG Yang1
Received:
2021-06-29
Revised:
2021-08-09
Online:
2022-02-23
Published:
2022-02-05
Contact:
LIU Feng
刘锋1,2(), 张雪智1, 王苏琴1, 冯震1, 葛丹丹1, 杨洋1
通讯作者:
刘锋
作者简介:
刘锋(1974—),男,高级工程师,研究方向为水污染控制理论与技术。E-mail:基金资助:
CLC Number:
LIU Feng, ZHANG Xuezhi, WANG Suqin, FENG Zhen, GE Dandan, YANG Yang. Thiosulfate-driven denitrification coupled with ANAMMOX to enhance total nitrogen removal[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 990-997.
刘锋, 张雪智, 王苏琴, 冯震, 葛丹丹, 杨洋. 硫代硫酸盐驱动自养反硝化耦合厌氧氨氧化强化总氮去除[J]. 化工进展, 2022, 41(2): 990-997.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1358
阶段 | 天数/d | HRT /h | 进水pH | 进水组成/mg·L-1 | TN容积负荷 /kg·m-3·d-1 | S/N比 | ||
---|---|---|---|---|---|---|---|---|
NH | NO | S2O | ||||||
Ⅰ | 第1~28 | 12 | 8 | 100 | 100 | 320 | 0.4 | 3.2 |
Ⅱ | 第29~49 | 12 | 8 | 100 | 100 | 210 | 0.4 | 2.1 |
Ⅲ | 第50~72 | 12 | 7 | 100 | 100 | 210 | 0.4 | 2.1 |
第73~90 | 6 | 7 | 100 | 100 | 210 | 0.8 | 2.1 | |
Ⅳ | 第91~100 | 6 | 7 | 100 | 100 | 160 | 0.8 | 1.6 |
第101~120 | 6 | 7 | 100 | 100 | 100 | 0.8 | 1.0 |
阶段 | 天数/d | HRT /h | 进水pH | 进水组成/mg·L-1 | TN容积负荷 /kg·m-3·d-1 | S/N比 | ||
---|---|---|---|---|---|---|---|---|
NH | NO | S2O | ||||||
Ⅰ | 第1~28 | 12 | 8 | 100 | 100 | 320 | 0.4 | 3.2 |
Ⅱ | 第29~49 | 12 | 8 | 100 | 100 | 210 | 0.4 | 2.1 |
Ⅲ | 第50~72 | 12 | 7 | 100 | 100 | 210 | 0.4 | 2.1 |
第73~90 | 6 | 7 | 100 | 100 | 210 | 0.8 | 2.1 | |
Ⅳ | 第91~100 | 6 | 7 | 100 | 100 | 160 | 0.8 | 1.6 |
第101~120 | 6 | 7 | 100 | 100 | 100 | 0.8 | 1.0 |
组号 | 进水组成/mg·L-1 | |||
---|---|---|---|---|
NO | NH | NO | S2O | |
BT1 | 100 | 0 | 0 | 160 |
BT2 | 0 | 100 | 132 | 0 |
BT3 | 100 | 100 | 0 | 160 |
组号 | 进水组成/mg·L-1 | |||
---|---|---|---|---|
NO | NH | NO | S2O | |
BT1 | 100 | 0 | 0 | 160 |
BT2 | 0 | 100 | 132 | 0 |
BT3 | 100 | 100 | 0 | 160 |
1 | 李祥, 马航, 黄勇, 等. 异养与硫自养反硝化协同处理高硝氮废水特性研究[J]. 环境科学, 2016, 37(7): 2646-2651. |
LI Xiang, MA Hang, HUANG Yong, et al. Characteristics of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of high nitrate in water[J]. Environmental Science, 2016, 37(7): 2646-2651. | |
2 | 史旋. 硫自养/异养反硝化协同脱氮运行效能及作用机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
SHI Xuan. Denitrification efficiency and mechanism of combined sulfur autotrophic and heterotrophic denitrification[D]. Harbin: Harbin Institute of Technology, 2017. | |
3 | 马景德, 潘建新, 李泽敏, 等. FeS自养反硝化与厌氧氨氧化的耦合脱氮机制[J]. 环境科学, 2019, 40(8): 3683-3690. |
MA Jingde, PAN Jianxin, LI Zemin, et al. Performance and mechanisms of advanced nitrogen removal via FeS-driven autotrophic denitrification coupled with ANAMMOX[J]. Environmental Science, 2019, 40(8): 3683-3690. | |
4 | 张星星, 张钰, 王超超, 等. 短程反硝化耦合厌氧氨氧化工艺及其应用前景研究进展[J]. 化工进展, 2020, 39(5): 1981-1991. |
ZHANG Xingxing, ZHANG Yu, WANG Chaochao, et al. Research advances in application prospect of partial denitrification coupled with ANAMMOX: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1981-1991. | |
5 | 李军, 郑驰骏, 刘健, 等. S2-/NO3--N对硫自养反硝化与厌氧氨氧化耦合脱氮除硫启动的影响[J]. 环境科学研究, 2015, 28(7): 1152-1158. |
LI Jun, ZHENG Chijun, LIU Jian, et al. Effects of S2-/NO3--N on sulfur autotrophic denitrification and anaerobic ammonia oxidation combined process for nitrogen and sulfur removal[J]. Research of Environmental Sciences, 2015, 28(7): 1152-1158. | |
6 | QIAN Jin, ZHANG Mingkuan, PEI Xiangjun, et al. A novel integrated thiosulfate-driven denitritation (TDD) and anaerobic ammonia oxidation (ANAMMOX) process for biological nitrogen removal[J]. Biochemical Engineering Journal, 2018, 139: 68-73. |
7 | CARDOSO R B, SIERRA-ALVAREZ R, ROWLETTE P, et al. Sulfide oxidation under chemolithoautotrophic denitrifying conditions[J]. Biotechnology and Bioengineering, 2006, 95(6): 1148-1157. |
8 | QIAN Jin, WEI Li, WU Yaoguo, et al. A comparative study on denitrifying sludge granulation with different electron donors: sulfide, thiosulfate and organics[J]. Chemosphere, 2017, 186: 322-330. |
9 | DU Rui, PENG Yongzhen, CAO Shenbin, et al. Mechanisms and microbial structure of partial denitrification with high nitrite accumulation[J]. Applied Microbiology and Biotechnology, 2016, 100(4): 2011-2021. |
10 | CHEN Hong, TU Zhi, WU Sha, et al. Recent advances in partial denitrification-anaerobic ammonium oxidation process for mainstream municipal wastewater treatment[J]. Chemosphere, 2021, 278: 130436. |
11 | LIU Chunshuang, ZHAO Dongfeng, YAN Laihong, et al. Elemental sulfur formation and nitrogen removal from wastewaters by autotrophic denitrifiers and ANAMMOX bacteria[J]. Bioresource Technology, 2015, 191: 332-336. |
12 | CAO Y S, LOOSDRECHT M C M VAN, DAIGGER G T. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1365-1383. |
13 | LIU Chunshuang, LI Wenfei, LI Xuechen, et al. Nitrite accumulation in continuous-flow partial autotrophic denitrification reactor using sulfide as electron donor[J]. Bioresource Technology, 2017, 243: 1237-1240. |
14 | SUN Y M, NEMATI M. Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters[J]. Bioresource Technology, 2012, 114: 207-216. |
15 | ZHANG Hanyu, DU Rui, CAO Shenbin, et al. Mechanisms and characteristics of biofilm formation via novel DEAMOX system based on sequencing biofilm batch reactor[J]. Journal of Bioscience and Bioengineering, 2019, 127(2): 206-212. |
16 | DU Rui, CAO Shenbin, LI Baikun, et al. Performance and microbial community analysis of a novel DEAMOX based on partial-denitrification and ANAMMOX treating ammonia and nitrate wastewaters[J]. Water Research, 2017, 108: 46-56. |
17 | JI Jiantao, PENG Yongzhen, LI Xiyao, et al. Stable long-term operation and high nitrite accumulation of an endogenous partial-denitrification (EPD) granular sludge system under mainstream conditions at low temperature[J]. Bioresource Technology, 2019, 289: 121634. |
18 | LI Xiang, YUAN Yan, HUANG Yong, et al. Inhibition of nitrite oxidizing bacterial activity based on low nitrite concentration exposure in an auto-recycling PN-Anammox process under mainstream conditions[J]. Bioresource Technology, 2019, 281: 303-308. |
19 | LI Xiang, YUAN Yan, HUANG Yong, et al. Simultaneous removal of ammonia and nitrate by coupled S0-driven autotrophic denitrification and Anammox process in fluorine-containing semiconductor wastewater[J]. Science of the Total Environment, 2019, 661: 235-242. |
20 | 方文烨, 李祥, 黄勇, 等. 单质硫自养短程反硝化耦合厌氧氨氧化强化脱氮[J]. 环境科学, 2020, 41(8): 3699-3706. |
FANG Wenye, LI Xiang, HUANG Yong, et al. Improved on nitrogen removal of anaerobic ammonia oxidation by coupling element sulfur-based autotrophic short-cut denitrification[J]. Environmental Science, 2020, 41(8): 3699-3706. | |
21 | 周健, 黄勇, 刘忻, 等. 硫自养反硝化耦合厌氧氨氧化脱氮条件控制研究[J]. 环境科学, 2016, 37(3): 1061-1069. |
ZHOU Jian, HUANG Yong, LIU Xin, et al. Element sulfur autotrophic denitrification combined anaerobic ammonia oxidation[J]. Environmental Science, 2016, 37(3): 1061-1069. | |
22 | 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. |
Editorial Board of Water and Wastewater Monitoring and Analysis Method, State Environmental Protection Administration. Methods for monitoring and analysis of water and wastewater [M]. 4th ed. Beijing: China Environmental Science Press, 2002. | |
23 | LOTTI T, KLEEREBEZEM R, LUBELLO C, et al. Physiological and kinetic characterization of a suspended cell ANAMMOX culture[J]. Water Research, 2014, 60: 1-14. |
24 | MORAES B S, SOUZA T S O, FORESTI E. Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors[J]. Process Biochemistry, 2012, 47(9): 1395-1401. |
25 | QIN Yujie, WU Chenglong, CHEN Buqing, et al. Short term performance and microbial community of a sulfide-based denitrification and ANAMMOX coupling system at different N/S ratios[J]. Bioresource Technology, 2019, 294: 122130. |
26 | QIN Yujie, CAO Yan, REN Junyi, et al. Effect of glucose on nitrogen removal and microbial community in ANAMMOX-denitrification system[J]. Bioresource Technology, 2017, 244: 33-39. |
27 | QIN Yujie, HAN Bin, CAO Yan, et al. Impact of substrate concentration on ANAMMOX-UBF reactors start-up[J]. Bioresource Technology, 2017, 239: 422-429. |
28 | 周娅, 买文宁, 代吉华, 等. 硫代硫酸钠联合硫铁矿自养反硝化脱氮性能[J]. 中国环境科学, 2020, 40(5): 2081-2086. |
ZHOU Ya, Wenning MAI, DAI Jihua, et al. Study on autotrophic denitrification performance of sodium thiosulfate combined with pyrite system[J]. China Environmental Science, 2020, 40(5): 2081-2086. | |
29 | ZHANG Tong, SHAO Mingfei, YE Lin. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J]. The ISME Journal, 2012, 6(6): 1137-1147. |
30 | MAHMOOD Q, ZHENG Ping, CAI Jing, et al. Anoxic sulfide biooxidation using nitrite as electron acceptor[J]. Journal of Hazardous Materials, 2007, 147(1/2): 249-256. |
31 | KOENIG A, LIU Lehua. Use of limestone for pH control in autotrophic denitrification: continuous flow experiments in pilot-scale packed bed reactors[J]. Journal of Biotechnology, 2002, 99(2): 161-171. |
32 | CUI Yanxiang, BISWAL B K, GUO Gang, et al. Biological nitrogen removal from wastewater using sulphur-driven autotrophic denitrification[J]. Applied Microbiology and Biotechnology, 2019, 103(15): 6023-6039. |
33 | QIAN Jin, ZHANG Mingkuan, WU Yaoguo, et al. A feasibility study on biological nitrogen removal (BNR) via integrated thiosulfate-driven denitratation with ANAMMOX[J]. Chemosphere, 2018, 208: 793-799.[LinkOut] |
34 | DENG Yangfan, EKAMA G A, CUI Yanxiang, et al. Coupling of sulfur (thiosulfate)-driven denitratation and anammox process to treat nitrate and ammonium contained wastewater[J]. Water Research, 2019, 163: 114854. |
35 | WU Chenglong, QIN Yujie, YANG Lan, et al. Effects of loading rates and N/S ratios in the sulfide-dependent autotrophic denitrification (SDAD) and ANAMMOX coupling system[J]. Bioresource Technology, 2020, 316: 123969. |
36 | OBEROI A S, HUANG Haiqin, KHANAL S K, et al. Electron distribution in sulfur-driven autotrophic denitrification under different electron donor and acceptor feeding schemes[J]. Chemical Engineering Journal, 2021, 404: 126486. |
37 | CAO Shenbin, PENG Yongzhen, DU Rui, et al. Feasibility of enhancing the denitrifying ammonium oxidation (DEAMOX) process for nitrogen removal by seeding partial denitrification sludge[J]. Chemosphere, 2016, 148: 403-407. |
38 | DU Rui, CAO Shenbin, LI Baikun, et al. Synergy of partial-denitrification and anammox in continuously fed upflow sludge blanket reactor for simultaneous nitrate and ammonia removal at room temperature[J]. Bioresource Technology, 2019, 274: 386-394. |
39 | SUN Xinbo, DU Lingfeng, HOU Yuqian, et al. Endogenous influences on anammox and sulfocompound-oxidizing autotrophic denitrification coupling system (A/SAD) and dynamic operating strategy[J]. Bioresource Technology, 2018, 264: 253-260. |
[1] | ZHU Yihao, ZHAO Baihang, WANG Chun, ZHANG Yuqing, YANG Haishan. Humic acid adsorption removal by modified coal gangue-based zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5531-5537. |
[2] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[3] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
[4] | ZENG Tianxu, ZHANG Yongxian, YAN Yuan, LIU Hong, MA Jiao, DANG Hongzhong, WU Xinbo, LI Weiwei, CHEN Yongzhi. Effects of hydroxylamine on the activity and kinetic parameters of nitrifying bacteria [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3272-3280. |
[5] | TANG Chunxia, LI Meng, WANG Yuxi, ZONG Yongzhong, FU Shaohai. Progress in structural design of functionalized cellulose nanomaterials for Cr(Ⅵ) removal [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 585-594. |
[6] | CHI Weili, YANG Hong. Pilot-scale nitrogen removal and optimization of anammox immobilized fillers in the treatment of rare earth tailings wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 506-516. |
[7] | LIANG Ge, HUANG Xiangfeng, LIU Wanqi, XIONG Yongjiao, PENG Kaiming. A review of superhydrophobic three-dimensional porous materials for oil/water separation of emulsions [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6557-6572. |
[8] | SUN Huilian, SUN Lingjie, ZHAO Yang, SUN Xiang, ZHANG Lunxiang. Research on the application of hydrate-based method in the treatment of actual complex wastewater and high salt wastewater [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6672-6679. |
[9] | LI Dong, GAO Xin, YANG Jie, CHEN Hao, ZHANG Jie. Achieving shortcut nitrification and denitrification phosphorus removal relies on long/short HRT combined with a low/high aeration strategy [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6111-6119. |
[10] | CHEN Erjun, ZHANG Yuling, LU Shaolei, DUAN Haiyang, JIN Wenzhang. Stability and physicochemical properties of air nanobubbles [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4673-4681. |
[11] | YANG Chengyu, LIU Min, YUAN Lin, HU Xuan, CHEN Ying. Adsorption of low-concentration phosphorus after cross-linked modification of bamboo-based cellulose nanofibrils [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5074-5084. |
[12] | YANG Jing, FAN Yiyi, WANG Saidi, WANG Fukai, MENG Xiuxia, YANG Naitao, LIU Shaomin. Layered double hydroxide (LDH) for phosphate removal [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3689-3706. |
[13] | TANG Chaochun, WANG Shunteng, HUANG Congxin, FENG Wentao, RUAN Yixuan, SHI Chunjing. Research progress on adsorption of heavy metal ions in water by mesoporous metal organic framework materials [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3263-3278. |
[14] | LU Zhiqiang, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang, CHEN Pengyu. Effects of load on power generation and copper removal rate of thermally regenerative ammonia-based batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3341-3349. |
[15] | GUO Zhihan, XU Yunxiang, LI Tianhao, HUANG Zichuan, LIU Wenru, SHEN Yaoliang. Research progress on long-term stable operation of aerobic granular sludge [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2686-2697. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |