Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 862-873.DOI: 10.16085/j.issn.1000-6613.2021-0463
• Materials science and technology • Previous Articles Next Articles
DAI Shaoling(), YU Zhen, LI Yihang, CHENG Shao’an()
Received:
2021-03-08
Revised:
2021-03-25
Online:
2022-02-23
Published:
2022-02-05
Contact:
CHENG Shao’an
通讯作者:
成少安
作者简介:
戴绍铃(1995—),男,硕士研究生,研究方向为电化学高级氧化。E-mail:基金资助:
CLC Number:
DAI Shaoling, YU Zhen, LI Yihang, CHENG Shao’an. Hierarchically nanostructured blue TiO2 with enhanced electrochemical oxidation performance and stability[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 862-873.
戴绍铃, 于桢, 李逸航, 成少安. 多层纳米结构蓝色TiO2的电化学氧化性能和稳定性[J]. 化工进展, 2022, 41(2): 862-873.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0463
电极 | 制备方法 | CMB/mg·L-1 | V/L | η/% | i/A·cm-2 | S/cm2 | t/min | Y/×10-3mg·C-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
Ti/SnO2-Sb | 直流电沉积 | 100 | 0.10 | 89.6 | 0.02 | 4 | 240 | 7.78 | [ |
Ti/SnO2-Sb-Ce | 直流电沉积 | 10 | 0.20 | 89.6 | 0.04 | 6 | 240 | 6.67 | [ |
Ti/SnO2-Sb | 溶胶-凝胶法 | 50 | 0.05 | 43.8 | 0.02 | 2 | 100 | 4.56 | [ |
Ti/IrO2-RuO2 | — | 100 | 0.15 | 98.0 | 0.10 | 6 | 30 | 13.61 | [ |
石墨阳极 | — | 50 | 0.50 | 72.5 | 0.01 | 22 | 60 | 22.89 | [ |
蓝色TiO2 | 电化学还原 | 100 | 0.10 | 96.7 | 0.02 | 4 | 90 | 22.38 | 本研究 |
电极 | 制备方法 | CMB/mg·L-1 | V/L | η/% | i/A·cm-2 | S/cm2 | t/min | Y/×10-3mg·C-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
Ti/SnO2-Sb | 直流电沉积 | 100 | 0.10 | 89.6 | 0.02 | 4 | 240 | 7.78 | [ |
Ti/SnO2-Sb-Ce | 直流电沉积 | 10 | 0.20 | 89.6 | 0.04 | 6 | 240 | 6.67 | [ |
Ti/SnO2-Sb | 溶胶-凝胶法 | 50 | 0.05 | 43.8 | 0.02 | 2 | 100 | 4.56 | [ |
Ti/IrO2-RuO2 | — | 100 | 0.15 | 98.0 | 0.10 | 6 | 30 | 13.61 | [ |
石墨阳极 | — | 50 | 0.50 | 72.5 | 0.01 | 22 | 60 | 22.89 | [ |
蓝色TiO2 | 电化学还原 | 100 | 0.10 | 96.7 | 0.02 | 4 | 90 | 22.38 | 本研究 |
44 | DUAN Tigang, WEN Qing, CHEN Ye, et al. Enhancing electrocatalytic performance of Sb-doped SnO2 electrode by compositing nitrogen-doped graphene nanosheets[J]. Journal of Hazardous Materials, 2014, 280: 304-314. |
45 | SONG Guanjun, YANG Jian, LI Wenxiang, et al. Electrolytic treatment of methylene blue solution with Ti-based IrO2-RuO2 anode[J]. Environmental Protection of Chemical Industry, 2012, 32(3): 205-208. |
46 | JAWAD NOOR H, NAJIM SARMAD T. Removal of methylene blue by direct electrochemical oxidation method using a graphite anode[J]. IOP Conference Series Materials Science and Engineering, 2018, 454(1): 012023. |
47 | CAI Jingju, ZHOU Minghua, YANG Weiliu, et al. Degradation and mechanism of 2,4-dichlorophenoxyacetic acid (2,4-D) by thermally activated persulfate oxidation[J]. Chemosphere, 2018, 212: 784-793. |
48 | ZHANG Hui, WANG Zhe, LIU Chiachi, et al. Removal of COD from landfill leachate by an electro/Fes/peroxydisulfate process[J]. Chemical Engineering Journal, 2014, 250: 76-82. |
49 | LIANG Chengju, WANG Zih Sin, BRUELL Clifford J, et al. Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere, 2007, 66(1): 106-113. |
50 | CHEN Luchuan, LEI Chaojun, LI Zhongjian, et al. Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants[J]. Chemosphere, 2018, 210: 516-523. |
51 | YANG Y, KAO L C, LIU Y, et al. Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment[J]. ACS Catal., 2018, 8(5): 4278-4287. |
1 | 桂新安, 杨海真. 高级氧化技术在垃圾渗滤液处理中的应用[J]. 环境科学与管理, 2007, 32(2): 58-63. |
GUI Xin’an, YANG Haizhen. Application of advanced oxidation processes in the treatment of landfill leachate[J]. Environmental Science and Management, 2007, 32(2): 58-63. | |
2 | GHERNAOUT Djame, ELBOUGHDIRI Noureddine, GHAREBA Saad, et al. Electrochemical advanced oxidation processes (EAOPs) for disinfecting water-fresh perspectives[J]. Open Access Library Journal, 2020, 7(4): 1-12. |
3 | Carlos MARTINEZ-HUITLE, RODRIGO Manuel, SIRES Ignasi, et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review[J]. Chemical Reviews, 2015, 115(24): 13362-13407. |
4 | 宋日海, 魏刚, 熊蓉春, 等. 废水处理用催化电极的研究与应用[J]. 水处理技术, 2006, 32(12): 4-9. |
SONG Rihai, WEI Gang, XIONG Rongchun, et al. Research and application of catalytic electrode for wastewater treatment[J]. Technology of Water Treatment, 2006, 32(12): 4-9. | |
5 | BRILLAS Enric, MARTINEZ-HUITLE Carlos A. Synthetic diamond films: preparation, electrochemistry, characterization, and applications[M]. Germany: John Wiley & Sons, Inc., 2011. |
6 | TRASATTI Sergio. Electrocatalysis: understanding the success of DSA[J]. Electrochimica Acta, 2000, 45(15): 2377-85. |
7 | 孔德生, 吕文华, 冯媛媛, 等. DSA电极电催化性能研究及尚待深入探究的几个问题[J]. 化学进展, 2009, 21(6): 1107-1117. |
KONG Desheng, Wenhua LYU, FENG Yuanyuan, et al. Advances and some problems in electrocatalysis of DSA electrodes[J]. Progress in Chemistry, 2009, 21(6): 1107-1117. | |
8 | 刘峻峰, 冯玉杰, 吕江维, 等. 含Mn中间层提高钛基SnO2电催化电极的稳定性[J]. 材料研究学报, 2008, 22(6): 593-598. |
LIU Junfeng, FENG Yujie, Jiangwei LYU, et al. Enhancing service life of SnO2 electrode by introducing an interlayer containing Mn element[J]. Chinese Journal of Materials Resarch, 2008, 22(6): 593-598. | |
9 | KIM Choonsoo, KIM Seonghwan, CHOI Jusol, et al. Blue TiO2 nanotube array as an oxidant generating novel anode material fabricated by simple cathodic polarization[J]. Electrochimica Acta, 2014, 141: 113-119. |
10 | GAN Ling, WU Yifan, SONG Haiou, et al. Self-doped TiO2 nanotube arrays for electrochemical mineralization of phenols[J]. Chemosphere, 2019, 226: 329-339. |
11 | FANG Wenzhang, XING Mingyang, ZHANG Jinlong, et al. A new approach to prepare Ti3+ self-doped TiO2via NaBH4 reduction and hydrochloric acid treatment[J]. Applied Catalysis B: Environmental, 2014, 160/161(1): 240-246. |
12 | WANG Zhou, YANG Chongyin, LIN Tianquan, et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania[J]. Energy & Environmental Science, 2013, 6(10): 3007-3014. |
13 | MAO Chengyu, ZUO Fan, HOU Yang, et al. In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction[J]. Angewandte Chemie International Edition, 2014, 53(39): 10485-10489. |
14 | CHEN Xiaobo, LIU Lei, YU Peter Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750. |
15 | LI Zhen, DING Youting, KANG Weijun, et al. Reduction mechanism and capacitive properties of highly electrochemically reduced TiO2 nanotube arrays[J]. Electrochimica Acta, 2015, 161: 40-47. |
16 | ZHANG Aiqin, GONG Feilong, XIAO Yuanhua, et al. Electrochemical reductive doping and interfacial impedance of TiO2 nanotube arrays in aqueous and aprotic solvents[J]. Journal of the Electrochemical Society, 2017, 164(2): 91-96. |
17 | GENG Ping, CHEN Guohua. Antifouling ceramic membrane electrode modified by Magnéli Ti4O7 for electro-microfiltration of humic acid[J]. Separation and Purification Technology, 2017, 185: 61-71. |
18 | WANG Fang, DING Xian, SHI Ruyue, et al. Facile synthesis of Ti4O7 on hollow carbon spheres with enhanced polysulfide binding for high-performance lithium–sulfur batteries[J]. Journal of Materials Chemistry A, 2019, 7(17): 10494-10504. |
19 | YOU Shijie, LIU Bo, GAO Yifan, et al. Monolithic porous Magnéli-phase Ti4O7 for electro-oxidation treatment of industrial wastewater[J]. Electrochimica Acta, 2016, 214: 326-335. |
20 | MOHAJERNIA S, HEJAZI S, MAZARE A, et al. Photoelectrochemical H2 generation from suboxide TiO2 nanotubes: visible-light absorption versus conductivity[J]. Chemistry, 2017, 23: 12406-12411. |
21 | LIU Gang, YANG Huagui, PAN Jian, et al. Titanium dioxide crystals with tailored facets[J]. Chemical Reviews, 2014, 114(19): 9559-9612. |
22 | CHANG Xin, THIND Sapanbir S, CHEN Aicheng, et al. Electrocatalytic enhancement of salicylic acid oxidation at electrochemically reduced TiO2 nanotubes[J]. ACS Catalysis, 2014, 4(8): 2616-2622. |
23 | CHANG Xin, ZALM Joshua Van Der, THIND Sapanbir S, et al. Electrochemical oxidation of lignin at electrochemically reduced TiO2 nanotubes[J]. Journal of Electroanalytical Chemistry, 2020, 863: 114049. |
24 | WU Hui, LI Dongdong, ZHU Xufei, et al. High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach[J]. Electrochimica Acta, 2014, 116: 129-136. |
25 | YANG Yang, HOFFMANN Michael R. Synthesis and stabilization of blue-black TiO2 nanotube arrays for electrochemical oxidant generation and wastewater treatment[J]. Environ. Sci. Technol., 2016, 50(21): 11888-11894. |
26 | CAI Jingju, ZHOU Minghua, PAN Yuwei, et al. Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on blue-TiO2 nanotubes anode[J]. Applied Catalysis B: Environmental, 2019, 257(15): 117902. |
27 | 宁成云, 王玉强, 郑华德, 等. 阳极氧化法制备二氧化钛纳米管阵列的研究[J]. 化学研究与应用, 2010, 22(1): 14-17. |
NING Chengyun, WANG Yuqiang, ZHENG Huade, et al. Study on preparation of TiO2 nanotube arrays by anodizing process[J]. Chemical Research and Application, 2010, 22(1): 14-17. | |
28 | WANG Jun, LIN Zhiqun. Anodic formation of ordered TiO2 nanotube arrays: effects of electrolyte temperature and anodization potential[J]. Journal of Physical Chemistry C, 2009, 113(10): 4026-4030. |
29 | TRASATTI Sergio, PETRII Oleg. Real surface area measurements in electrochemistry[J]. Journal of Electroanalytical Chemistry, 1992, 327(1): 353-376. |
30 | VOIRY Damien, CHHOWALLA Manish, GOGOTSI Yury, et al. Best practices for reporting electrocatalytic performance of nanomaterials[J]. ACS Nano, 2018, 12(10): 9635-9638. |
31 | SANTOS D, PACHECO M J, GOMES A, et al. Preparation of Ti/Pt/SnO2–Sb2O4 electrodes for anodic oxidation of pharmaceutical drugs[J]. Journal of Applied Electrochemistry, 2013, 43: 407-416 |
32 | HYAM Rajeshkumar S, CHOI Dukhyun. Effects of titanium foil thickness on TiO2 nanostructures synthesized by anodization[J]. RSC Advances, 2013, 3(19): 7057-7063. |
33 | ZHANG S Y, YU D L, LI D D, et al. Forming process of anodic TiO2 nanotubes under a preformed compact surface layer[J]. Journal of the Electrochemical Society, 2014, 161(10): 135-141. |
34 | SKELDON P, THOMPSON G E, GARCIA-VERGARA S J, et al. A tracer study of porous anodic alumina[J]. Electrochemical & Solid State Letters, 2006, 9(11): B47. |
35 | GARCIA-VERGARA S J, SKELDON P, THOMPSON G E, et al. A flow model of porous anodic film growth on aluminium[J]. Electrochimica Acta, 2007, 52(2): 681-687. |
36 | ALBELLA J M, MONTERO I, MARTINEZ-DUART J M, et al. A theory of avalanche breakdown during anodic oxidation[J]. Electrochimica Acta, 1987, 32(2): 255-258. |
37 | MAZZAROLO A, CURIONI M, VICENZO A, et al. Anodic growth of titanium oxide: electrochemical behaviour and morphological evolution[J]. Electrochimica Acta, 2012, 75: 288-295. |
38 | XU Xin, CAI Jingju, ZHOU Minghua, et al. Photoelectrochemical degradation of 2,4-dichlorophenoxyacetic acid using electrochemically self-doped blue TiO2 nanotube arrays with formic acid as electrolyte[J]. Journal of Hazardous Materials, 2019, 382: 121096. |
39 | MACAK J M, GONG B G, HUEPPE M, et al. Filling of TiO2 nanotubes by self-doping and electrodeposition[J]. Advanced Materials, 2007, 19(19): 3027-3031. |
40 | GHICOV Andrei, TSUCHIYA Hiroaki, HAHN Robert, et al. TiO2 nanotubes: H+ insertion and strong electrochromic effects[J]. Electrochemistry Communications, 2006, 8(4): 528-532. |
41 | YANG Yang, Licheng KAO, LIU Yuanyue, et al. Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment[J]. ACS Catalysis, 2018, 8(5): 4278-4287. |
42 | SUN Yi, CHENG Shaoan, MAO Zhengzhong, et al. High electrochemical activity of a Ti/SnO2-Sb electrode electrodeposited using deep eutectic solvent[J]. Chemosphere, 2019, 239: 124715. |
43 | YANG Kun, Liu Yuyu, Qiao Jinli, et al. Electrodeposition preparation of Ce-doped Ti/SnO2-Sb electrodes by using selected addition agents for efficient electrocatalytic oxidation of methylene blue in water[J]. Separation & Purification Technology, 2017, 189(22): 459-466. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[4] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[5] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[6] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[7] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[8] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
[9] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[10] | WANG Xin, WANG Bingbing, YANG Wei, XU Zhiming. Anti-scale and anti-corrosion properties of PDA/PTFE superhydrophobic coating on metal surface [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4315-4321. |
[11] | LI Haidong, YANG Yuankun, GUO Shushu, WANG Benjin, YUE Tingting, FU Kaibin, WANG Zhe, HE Shouqin, YAO Jun, CHEN Shu. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. |
[12] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[13] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[14] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[15] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |