Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 637-647.DOI: 10.16085/j.issn.1000-6613.2021-0671
• Energy processes and technology • Previous Articles Next Articles
LYU Xiaoqi1(), LI Hong1, ZHAO Zhenyu1, LI Xingang1, GAO Xin1(), FAN Xiaolei2()
Received:
2021-03-31
Revised:
2021-07-19
Online:
2022-02-23
Published:
2022-02-05
Contact:
GAO Xin,FAN Xiaolei
吕孝琦1(), 李洪1, 赵振宇1, 李鑫钢1, 高鑫1(), 范晓雷2()
通讯作者:
高鑫,范晓雷
作者简介:
吕孝琦(1996—),女,硕士研究生,研究方向为微波强化反应过程。E-mail:基金资助:
CLC Number:
LYU Xiaoqi, LI Hong, ZHAO Zhenyu, LI Xingang, GAO Xin, FAN Xiaolei. Microwave-assisted carbon-based catalysts for fructose dehydration to 5-hydroxymethylfurfural[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 637-647.
吕孝琦, 李洪, 赵振宇, 李鑫钢, 高鑫, 范晓雷. 微波与碳基催化剂协同促进果糖制5-羟甲基糠醛[J]. 化工进展, 2022, 41(2): 637-647.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0671
样品 | ε' | ε'' | tanδ | σ/μS·cm-1 |
---|---|---|---|---|
DMSO | 44.60 | 11.05 | 0.2478 | 0.17 |
AC-SA悬浮液 | 44.78 | 11.18 | 0.2497 | 1.64 |
CNF-SA悬浮液 | 44.84 | 11.24 | 0.2507 | 2.07 |
CB-SA悬浮液 | 45.09 | 11.41 | 0.2531 | 2.33 |
CNT-SA悬浮液 | 45.61 | 11.82 | 0.2591 | 4.35 |
样品 | ε' | ε'' | tanδ | σ/μS·cm-1 |
---|---|---|---|---|
DMSO | 44.60 | 11.05 | 0.2478 | 0.17 |
AC-SA悬浮液 | 44.78 | 11.18 | 0.2497 | 1.64 |
CNF-SA悬浮液 | 44.84 | 11.24 | 0.2507 | 2.07 |
CB-SA悬浮液 | 45.09 | 11.41 | 0.2531 | 2.33 |
CNT-SA悬浮液 | 45.61 | 11.82 | 0.2591 | 4.35 |
样品名称 | 石墨化度/% | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 密度/g·cm-3 |
---|---|---|---|---|
AC-SA | 31.32 | 1093.37 | 0.59 | 0.45 |
CNF-SA | 66.24 | 37.52 | 0.17 | 2.10 |
CB-SA | 16.38 | 103.37 | 0.43 | 0.28 |
CNT-SA | 73.58 | 190.80 | 0.84 | 0.13 |
样品名称 | 石墨化度/% | 比表面积/m2·g-1 | 孔容/cm3·g-1 | 密度/g·cm-3 |
---|---|---|---|---|
AC-SA | 31.32 | 1093.37 | 0.59 | 0.45 |
CNF-SA | 66.24 | 37.52 | 0.17 | 2.10 |
CB-SA | 16.38 | 103.37 | 0.43 | 0.28 |
CNT-SA | 73.58 | 190.80 | 0.84 | 0.13 |
样品 | 总酸浓度 /mmol·g-1 | 磺酸基团浓度 /mmol·g-1 | 羧酸基团和酚羟基浓度 /mmol·g-1 |
---|---|---|---|
AC-SA | 3.28 | 0.51 | 2.77 |
CNF-SA | 4.14 | 0.62 | 3.52 |
CB-SA | 3.86 | 0.56 | 3.30 |
CNT-SA | 3.92 | 0.60 | 3.32 |
样品 | 总酸浓度 /mmol·g-1 | 磺酸基团浓度 /mmol·g-1 | 羧酸基团和酚羟基浓度 /mmol·g-1 |
---|---|---|---|
AC-SA | 3.28 | 0.51 | 2.77 |
CNF-SA | 4.14 | 0.62 | 3.52 |
CB-SA | 3.86 | 0.56 | 3.30 |
CNT-SA | 3.92 | 0.60 | 3.32 |
样品 | 升温速率/℃·min-1 | 稳定温度/℃ | 达到稳定时间/min |
---|---|---|---|
DMSO纯溶剂 | 25.41 | 109.52 | 3.49 |
AC-SA悬浮液 | 43.95 | 110.55 | 2.04 |
CNF-SA悬浮液 | 51.46 | 110.70 | 1.76 |
CB-SA悬浮液 | 56.54 | 112.06 | 1.62 |
CNT-SA悬浮液 | 68.05 | 112.30 | 1.35 |
样品 | 升温速率/℃·min-1 | 稳定温度/℃ | 达到稳定时间/min |
---|---|---|---|
DMSO纯溶剂 | 25.41 | 109.52 | 3.49 |
AC-SA悬浮液 | 43.95 | 110.55 | 2.04 |
CNF-SA悬浮液 | 51.46 | 110.70 | 1.76 |
CB-SA悬浮液 | 56.54 | 112.06 | 1.62 |
CNT-SA悬浮液 | 68.05 | 112.30 | 1.35 |
1 | JING Y X, GUO Y, XIA Q N, et al. Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass[J]. Chem, 2019, 5(10): 2520-2546. |
2 | WANG J J, XU W J, REN J W, et al. Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid[J]. Green Chemistry, 2011, 13(10): 2678-2681. |
3 | HUBER G W, CHHEDA J N, BARRETT C J, et al. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates[J]. Science, 2005, 308(5727): 1446-1450. |
4 | WEI Z J, LOU J T, LI Z B, et al. One-pot production of 2, 5-dimethylfuran from fructose over Ru/C and a Lewis–Brønsted acid mixture in N,N-dimethylformamide[J]. Catalysis Science & Technology, 2016, 6(16): 6217-6225. |
5 | TOFTGAARD PEDERSEN A, RINGBORG R, GROTKJÆR T, et al. Synthesis of 5-hydroxymethylfurfural (HMF) by acid catalyzed dehydration of glucose-fructose mixtures[J]. Chemical Engineering Journal, 2015, 273: 455-464. |
6 | MARULLO S, RIZZO C, MELI A, et al. Ionic liquid binary mixtures, zeolites, and ultrasound irradiation: a combination to promote carbohydrate conversion into 5-hydroxymethylfurfural[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5818-5826. |
7 | BESSON M, GALLEZOT P, PINEL C. Conversion of biomass into chemicals over metal catalysts[J]. Chemical Reviews, 2014, 114(3): 1827-1870. |
8 | TEMPELMAN C, JACOBS U, HUT T, et al. Sn exchanged acidic ion exchange resin for the stable and continuous production of 5-HMF from glucose at low temperature[J]. Applied Catalysis A: General, 2019, 588: 117267. |
9 | SHAHANGI F, NAJAFI CHERMAHINI A, SARAJI M. Dehydration of fructose and glucose to 5-hydroxymethylfurfural over Al-KCC-1 silica[J]. Journal of Energy Chemistry, 2018, 27(3): 769-780. |
10 | LAM E, LUONG J H T. Carbon materials as catalyst supports and catalysts in the transformation of biomass to fuels and chemicals[J]. ACS Catalysis, 2014, 4(10): 3393-3410. |
11 | CHHABRA T, BAHUGUNA A, DHANKHAR S S, et al. Sulfonated graphitic carbon nitride as a highly selective and efficient heterogeneous catalyst for the conversion of biomass-derived saccharides to 5-hydroxymethylfurfural in green solvents[J]. Green Chemistry, 2019, 21(21): 6012-6026. |
12 | YU X, CHU Y Y, ZHANG L, et al. Adjacent acid sites cooperatively catalyze fructose to 5-hydroxymethylfurfural in a new, facile pathway[J]. Journal of Energy Chemistry, 2020, 47: 112-117. |
13 | CRISCI A J, TUCKER M H, LEE M Y, et al. Acid-functionalized SBA-15-type silica catalysts for carbohydrate dehydration[J]. ACS Catalysis, 2011, 1(7): 719-728. |
14 | CAO Z, FAN Z X, CHEN Y, et al. Efficient preparation of 5-hydroxymethylfurfural from cellulose in a biphasic system over hafnyl phosphates[J]. Applied Catalysis B: Environmental, 2019, 244: 170-177. |
15 | DE BRUYN M, FAN J, BUDARIN V L, et al. A new perspective in bio-refining: levoglucosenone and cleaner lignin from waste biorefinery hydrolysis lignin by selective conversion of residual saccharides[J]. Energy & Environmental Science, 2016, 9(8): 2571-2574. |
16 | 赵振宇, 李洪, 李鑫钢, 等. 基于介电性质差异的微波诱导强化蒸馏分离[J]. 化工进展, 2020, 39(6): 2275-2283. |
ZHAO Zhenyu, LI Hong, LI Xingang, et al. Microwave-induced enhancement of distillation separation based on dielectric properties difference[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2275-2283. | |
17 | WANG Q F, HAO J Q, ZHAO Z B. Microwave-assisted conversion of fructose to 5-hydroxymethylfurfural using sulfonated porous carbon derived from biomass[J]. Australian Journal of Chemistry, 2018, 71(1): 24. |
18 | JIA X C, YU I K M, TSANG D C W, et al. Functionalized zeolite-solvent catalytic systems for microwave-assisted dehydration of fructose to 5-hydroxymethylfurfural[J]. Microporous and Mesoporous Materials, 2019, 284: 43-52. |
19 | QI X H, WATANABE M, AIDA T M, et al. Selective conversion of D-fructose to 5-hydroxymethylfurfural by ion-exchange resin in acetone/dimethyl sulfoxide solvent mixtures[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 9234-9239. |
20 | UMRIGAR V R, CHAKRABORTY M, PARIKH P. Catalytic activity of zeolite Hβ for the preparation of fuels’ additives: its product distribution and scale up calculation for the biofuel formation in a microwave assisted batch reactor[J]. Journal of Environmental Chemical Engineering, 2018, 6(6): 6816-6827. |
21 | JI T, TU R, MU L W, et al. Structurally tuning microwave absorption of core/shell structured CNT/polyaniline catalysts for energy efficient saccharide-HMF conversion[J]. Applied Catalysis B: Environmental, 2018, 220: 581-588. |
22 | YU I K M, XIONG X N, TSANG D C W, et al. Graphite oxide- and graphene oxide-supported catalysts for microwave-assisted glucose isomerisation in water[J]. Green Chemistry, 2019, 21(16): 4341-4353. |
23 | DUTTA S, DE S, PATRA A K, et al. Microwave assisted rapid conversion of carbohydrates into 5-hydroxymethylfurfural catalyzed by mesoporous TiO2 nanoparticles[J]. Applied Catalysis A: General, 2011, 409/410: 133-139. |
24 | WANG J, QU T, LIANG M S, et al. Microwave assisted rapid conversion of fructose into 5-HMF over solid acid catalysts[J]. RSC Advances, 2015, 5(128): 106053-106060. |
25 | VASUDEVAN S V, KONG X H, CAO M J, et al. Microwave-assisted liquefaction of carbohydrates for 5-hydroxymethylfurfural using tungstophosphoric acid encapsulated dendritic fibrous mesoporous silica as a catalyst[J]. Science of the Total Environment, 2021, 760: 143379. |
26 | SANTOS E J, KAXIRAS E. Electric-field dependence of the effective dielectric constant in graphene[J]. Nano Letters, 2013, 13(3): 898-902. |
27 | 翟金鹏, 李鑫钢, 李洪, 等. 微波诱导热解废旧润滑油的研究[J]. 现代化工, 2020, 40(1): 77-80, 85. |
ZHAI Jinpeng, LI Xingang, LI Hong, et al. Microwave induced pyrolysis of waste lubricant oil[J]. Modern Chemical Industry, 2020, 40(1): 77-80, 85. | |
28 | XU H, YIN X, ZHU M, et al. Carbon hollow microspheres with a designable mesoporous shell for high-performance electromagnetic wave absorption[J]. ACS Applied Materials & Interfaces, 2017, 9(7): 6332-6341. |
29 | CONTESCU A, CONTESCU C, PUTYERA K, et al. Surface acidity of carbons characterized by their continuous pK distribution and Boehm titration[J]. Carbon, 1997, 35(1): 83-94. |
30 | ZHANG X H, TAN C, MA Y H, et al. BaTiO3@carbon/silicon carbide/poly(vinylidene fluoride-hexafluoropropylene) three-component nanocomposites with high dielectric constant and high thermal conductivity[J]. Composites Science and Technology, 2018, 162: 180-187. |
31 | LI X, TUO Y X, LI P, et al. Effects of carbon support on microwave-assisted catalytic dehydrogenation of decalin[J]. Carbon, 2014, 67: 775-783. |
32 | YANG J F, ZHANG H Y, AO Z F, et al. Hydrothermal carbon enriched with sulfonic and carboxyl groups as an efficient solid acid catalyst for butanolysis of furfuryl alcohol[J]. Catalysis Communications, 2019, 123: 109-113. |
33 | LIU H H, GU S L, CAO H, et al. A dense packing structure constructed by flake and spherical graphite: simultaneously enhanced in-plane and through-plane thermal conductivity of polypropylene/graphite composites[J]. Composites Communications, 2020, 19: 25-29. |
34 | WU K H, TING T H, WANG G P, et al. Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites[J]. Polymer Degradation and Stability, 2008, 93(2): 483-488. |
35 | BALBERG I. A comprehensive picture of the electrical phenomena in carbon black-polymer composites[J]. Carbon, 2002, 40(2): 139-143. |
36 | QI W, HE C, WANG Q, et al. Carbon-based solid acid pretreatment in corncob saccharification: specific xylose production and efficient enzymatic hydrolysis[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3640-3648. |
37 | HU L, LI Z, WU Z, et al. Catalytic hydrolysis of microcrystalline and rice straw-derived cellulose over a chlorine-doped magnetic carbonaceous solid acid[J]. Industrial Crops and Products, 2016, 84: 408-417. |
38 | DURKA T, GERVEN T VAN, STANKIEWICZ A. Microwaves in heterogeneous gas-phase catalysis: experimental and numerical approaches[J]. Chemical Engineering & Technology, 2009, 32(9): 1301-1312. |
39 | QI X H, WATANABE M, AIDA T M, et al. Catalytic dehydration of fructose into 5-hydroxymethylfurfural by ion-exchange resin in mixed-aqueous system by microwave heating[J]. Green Chemistry, 2008, 10(7): 799. |
40 | MARULLO S, RIZZO C, D’ANNA F. Activity of a heterogeneous catalyst in deep eutectic solvents: the case of carbohydrate conversion into 5-hydroxymethylfurfural[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 13359-13368. |
41 | KANG S M, FU J X, ZHANG G. From lignocellulosic biomass to levulinic acid: a review on acid-catalyzed hydrolysis[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 340-362. |
42 | WHITAKER M R, PARULKAR A, RANADIVE P, et al. Examining acid formation during the selective dehydration of fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide and water[J]. ChemSusChem, 2019, 12(10): 2211-2219. |
43 | FRAILE J M, GARCÍA-BORDEJÉ E, PIRES E, et al. Catalytic performance and deactivation of sulfonated hydrothermal carbon in the esterification of fatty acids: comparison with sulfonic solids of different nature[J]. Journal of Catalysis, 2015, 324: 107-118. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[5] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[6] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[7] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[8] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[9] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[10] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[11] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[12] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[13] | DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065. |
[14] | FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei. Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370. |
[15] | WANG Zijian, KE Ming, SONG Zhaozheng, LI Jiahan, TONG Yanbing, SUN Jinru. Progress in alkylation of gasoline with molecular sieve catalyst for benzene reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2371-2389. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |