Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (10): 5599-5611.DOI: 10.16085/j.issn.1000-6613.2021-2422
• Resources and environmental engineering • Previous Articles Next Articles
WAN Huan’ai1,2(), SHAO Lishu1,2(), LIU Na1,2, MAO Li1, ZHANG Lin1,2, ZHAN Peng1,2, CHEN Jienan1,2
Received:
2021-11-25
Revised:
2022-05-31
Online:
2022-10-21
Published:
2022-10-20
Contact:
SHAO Lishu
万欢爱1,2(), 邵礼书1,2(), 刘娜1,2, 毛莉1, 张林1,2, 詹鹏1,2, 陈介南1,2
通讯作者:
邵礼书
作者简介:
万欢爱(1997—),女,硕士研究生,研究方向为生物质能源与材料。E-mail:wanhuanai921@163.com。
基金资助:
CLC Number:
WAN Huan’ai, SHAO Lishu, LIU Na, MAO Li, ZHANG Lin, ZHAN Peng, CHEN Jienan. Preparation of nitrogen modified lignin-based hyper-cross-linked polymers and their radioactive iodine capture[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5599-5611.
万欢爱, 邵礼书, 刘娜, 毛莉, 张林, 詹鹏, 陈介南. 氮修饰木质素基超交联聚合物的制备及其放射性碘捕获[J]. 化工进展, 2022, 41(10): 5599-5611.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2422
材料 | 比表面积 /m2·g-1 | 孔体积 /cm3·g-1 | 平均孔径 /nm | 微孔孔容 /cm3·g-1 | 介孔孔容 /cm3·g-1 | 微孔比表面积 /m2·g-1 | 介孔比表面积 /m2·g-1 | 元素原子分数/% | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | N | Cl | I | ||||||||
NLHCP-1 | 715.8 | 0.85 | 4.7 | 0.18 | 0.16 | 367.3 | 39.3 | 86.2 | 7.5 | 4.0 | 1.5 | — |
NLHCP-2 | 364.4 | 0.24 | 2.6 | 0.11 | 0.07 | 245.7 | 27.3 | 70.2 | 23.7 | 4.5 | 1.1 | — |
NLHCP-3 | 190.4 | 0.36 | 7.6 | 0.04 | 0.22 | 58.8 | 45.1 | 80.4 | 13.6 | 4.1 | 0.8 | — |
NLHCP-2@I2 | — | — | — | — | — | — | — | 72.0 | 16.5 | 4.8 | 1.2 | 4.2 |
材料 | 比表面积 /m2·g-1 | 孔体积 /cm3·g-1 | 平均孔径 /nm | 微孔孔容 /cm3·g-1 | 介孔孔容 /cm3·g-1 | 微孔比表面积 /m2·g-1 | 介孔比表面积 /m2·g-1 | 元素原子分数/% | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C | O | N | Cl | I | ||||||||
NLHCP-1 | 715.8 | 0.85 | 4.7 | 0.18 | 0.16 | 367.3 | 39.3 | 86.2 | 7.5 | 4.0 | 1.5 | — |
NLHCP-2 | 364.4 | 0.24 | 2.6 | 0.11 | 0.07 | 245.7 | 27.3 | 70.2 | 23.7 | 4.5 | 1.1 | — |
NLHCP-3 | 190.4 | 0.36 | 7.6 | 0.04 | 0.22 | 58.8 | 45.1 | 80.4 | 13.6 | 4.1 | 0.8 | — |
NLHCP-2@I2 | — | — | — | — | — | — | — | 72.0 | 16.5 | 4.8 | 1.2 | 4.2 |
序号 | 吸附剂 | 比表面积/m2·g-1 | 温度/K | 吸附量/g·g-1 | 文献 |
---|---|---|---|---|---|
1 | 共轭微孔聚合纳米管(CMPN-1-3) | 1368 | 343 | 2.08 | [ |
2 | 含噻吩基团的共轭微孔聚合物 | 120 | 353 | 3.45 | [ |
3 | 异孔COF空心微球(SIOC-COF-7) | 618 | 348 | 4.81 | [ |
4 | 有机聚合物(pha-HcoP-1) | 217 | 353 | 1.31 | [ |
5 | 有机多孔聚合物(NDB-H) | 117 | 353 | 4.43 | [ |
6 | 多孔芳香骨架材料 (PAF-21 /22) | 104 | 353 | 1.52 | [ |
7 | 共价三嗪聚合物(CTFs) | 1476/897/62 | 348 | 4.31/2.41/1.18 | [ |
8 | 巴比妥酸基吸附剂(UiO-66-NH2) | 406/317 | 353 | 1.17/1.33 | [ |
9 | 木质素基聚合物(NLHCP-2) | 444 | 351 | 2.50 | 本文研究 |
序号 | 吸附剂 | 比表面积/m2·g-1 | 温度/K | 吸附量/g·g-1 | 文献 |
---|---|---|---|---|---|
1 | 共轭微孔聚合纳米管(CMPN-1-3) | 1368 | 343 | 2.08 | [ |
2 | 含噻吩基团的共轭微孔聚合物 | 120 | 353 | 3.45 | [ |
3 | 异孔COF空心微球(SIOC-COF-7) | 618 | 348 | 4.81 | [ |
4 | 有机聚合物(pha-HcoP-1) | 217 | 353 | 1.31 | [ |
5 | 有机多孔聚合物(NDB-H) | 117 | 353 | 4.43 | [ |
6 | 多孔芳香骨架材料 (PAF-21 /22) | 104 | 353 | 1.52 | [ |
7 | 共价三嗪聚合物(CTFs) | 1476/897/62 | 348 | 4.31/2.41/1.18 | [ |
8 | 巴比妥酸基吸附剂(UiO-66-NH2) | 406/317 | 353 | 1.17/1.33 | [ |
9 | 木质素基聚合物(NLHCP-2) | 444 | 351 | 2.50 | 本文研究 |
材料 | 准一级动力学 | 准二级动力学 | |||||
---|---|---|---|---|---|---|---|
Qe | K1 | R2 | Qe | K2 | R2 | ||
NLHCP-1 | 167.3 | 5.5×10-3 | 0.9754 | 214.5 | 2.4×10-5 | 0.9817 | |
NLHCP-2 | 189.2 | 2.3×10-2 | 0.9882 | 216.3 | 1.2×10-4 | 0.9548 | |
NLHCP-3 | 175.4 | 1.7×10-2 | 0.9733 | 202.2 | 1.0×10-4 | 0.9512 |
材料 | 准一级动力学 | 准二级动力学 | |||||
---|---|---|---|---|---|---|---|
Qe | K1 | R2 | Qe | K2 | R2 | ||
NLHCP-1 | 167.3 | 5.5×10-3 | 0.9754 | 214.5 | 2.4×10-5 | 0.9817 | |
NLHCP-2 | 189.2 | 2.3×10-2 | 0.9882 | 216.3 | 1.2×10-4 | 0.9548 | |
NLHCP-3 | 175.4 | 1.7×10-2 | 0.9733 | 202.2 | 1.0×10-4 | 0.9512 |
材料 | Langmuir模型 | Freundlich模型 | |||||
---|---|---|---|---|---|---|---|
Qm | Ka | R2 | 1/n | Kf | R2 | ||
NLHCP-1 | 186.8 | 6.3×10-3 | 0.9942 | 0.48 | 7.95 | 0.9918 | |
NLHCP-2 | 230.8 | 1.1×10-2 | 0.9652 | 0.43 | 16.23 | 0.9991 | |
NLHCP-3 | 228.2 | 4.5×10-3 | 0.9819 | 0.57 | 5.16 | 0.9423 |
材料 | Langmuir模型 | Freundlich模型 | |||||
---|---|---|---|---|---|---|---|
Qm | Ka | R2 | 1/n | Kf | R2 | ||
NLHCP-1 | 186.8 | 6.3×10-3 | 0.9942 | 0.48 | 7.95 | 0.9918 | |
NLHCP-2 | 230.8 | 1.1×10-2 | 0.9652 | 0.43 | 16.23 | 0.9991 | |
NLHCP-3 | 228.2 | 4.5×10-3 | 0.9819 | 0.57 | 5.16 | 0.9423 |
1 | BURNS P C, EWING R C, NAVROTSKY A. Nuclear fuel in a reactor accident[J]. Science, 2012, 335(6073): 1184-1188. |
2 | BANERJEE D, CHEN Xianyin, LOBANOV S S, et al. Iodine adsorption in metal organic frameworks in the presence of humidity[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 10622-10626. |
3 | ABDELMOATY Y H, TESSEMA T D, CHOUDHURY F A, et al. Nitrogen-rich porous polymers for carbon dioxide and iodine sequestration for environmental remediation[J]. ACS Applied Materials & Interfaces, 2018, 10(18): 16049-16058. |
4 | 玮达, 张晓媛, 顾平, 等. 吸附法处理水体中放射性碘核素研究进展[J]. 水处理技术, 2017, 43(9): 6-12. |
BOUNSOU Pankeo, ZHANG Xiaoyuan, GU Ping, et al. Research progress of radioactive iodine treatment by adsorption method from water[J]. Technology of Water Treatment, 2017, 43(9): 6-12. | |
5 | 邓景衡, 余侃萍, 肖国光, 等. 吸附法处理重金属废水研究进展[J]. 工业水处理, 2014, 34(11): 4-7. |
DENG Jingheng, YU KanPing, XIAO Guoguang, et al. Research progress in the treatment of heavy metal wastewater by adsorption[J]. Industrial Water Treatment, 2014, 34(11): 4-7. | |
6 | CHOUNG S, UM W, KIM M, et al. Uptake mechanism for iodine species to black carbon[J]. Environmental Science & Technology, 2013, 47(18): 10349-10355. |
7 | 龙英才, 张玲妹, 杨波, 等. 一种高载银量沸石脱碘吸附剂及其制备方法: CN1486784A[P]. 2004-04-07. |
LONG Yingcai, ZHANG Linmei, YANG Bo, et al. Zeolite deiodination adsorbent with high silver carrying amount and its prepn process: CN1486784A[P]. 2004-04-07. | |
8 | LIANG Lü, LI Luo. Adsorption behavior of calcined layered double hydroxides towards removal of iodide contaminants[J]. Journal of Radioanalytical and Nuclear Chemistry, 2007, 273(1): 221-226. |
9 | 熊伟, 曹骐, 王海军, 等. 载银丝光沸石和载银氧化铝对气态碘的吸附研究[J]. 核动力工程, 2019, 40(1): 131-134. |
XIONG Wei, CAO Qi, WANG Haijun, et al. Study on dynamic adsorption of gaseous iodine by silver loaded mordenite and alumina[J]. Nuclear Power Engineering, 2019, 40(1): 131-134. | |
10 | 梁飞, 李永国, 张计荣, 等. 核燃料后处理厂溶解废气中放射性碘吸附材料的研究与应用[J]. 中国辐射卫生, 2015, 24(4): 423-426. |
LIANG Fei, LI Yongguo, ZHANG Jirong, et al. Research and application of adsorbents for removing radioiodine from dissolver off-gas in nuclear fuel reprocessing plant[J]. Chinese Journal of Radiological Health, 2015, 24(4): 423-426. | |
11 | MAO Ping, QI Bingbing, LIU Ying, et al. AgII doped MIL-101 and its adsorption of iodine with high speed in solution[J]. Journal of Solid State Chemistry, 2016, 237:274-283. |
12 | 王玲钰, 包良进. 放射性尾气中碘的净化处理研究进展[J]. 韩山师范学院学报, 2020, 41(6): 23-38. |
WANG Lingyu, BAO Liangjin. Research progress on iodine removal from radioactive off-gases[J]. Journal of Hanshan Normal University, 2020, 41(6): 23-38. | |
13 | WAHEED A, BAIG N, ULLAH N, et al. Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: a review of recent advances[J]. Journal of Environmental Management, 2021, 287: 112360. |
14 | XU Shujun, LUO Yali, TAN Bi’en. Recent development of hyper-cross-linked microporous organic polymers[J]. Macromolecular Rapid Communications, 2013, 34(6): 471-484. |
15 | TAN Liangxiao, TAN Bi’en. Hypercrosslinked porous polymer materials: design, synthesis, and applications[J]. Chemical Society Reviews, 2017, 46(11): 3322-3356. |
16 | 殷怡琳, 邸明伟. 木质素/聚烯烃复合材料界面增容的研究进展[J]. 化工进展, 2020, 39(8): 3135-3145. |
YIN Yilin, DI Mingwei. Research progress on the interfacial compatibilizing of lignin/polyolefin composites[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3135-3145. | |
17 | 孙蒙崖, 刘娜, 傅英娟. 木质素在材料中的应用研究进展[J]. 现代化工, 2019, 39(2): 31-35. |
SUN Mingya, LIU Na, FU Yingjuan. Research progress in application of lignin in materials[J]. Modern Chemical Industry, 2019, 39(2): 31-35. | |
18 | 田静, 杨益琴, 宋君龙. 木质素的化学改性及其在高分子材料中的应用[J]. 纤维素科学与技术, 2018, 26(4): 76-85. |
TIAN Jing, YANG Yiqing, SONG Junlong. Current advances in chemical modification of lignin and its application in composite materials[J]. Journal of Cellulose Science and Technology, 2018, 26(4): 76-85. | |
19 | JIANG Chenglong, WANG Xiaohong, QIN Deming, et al. Construction of magnetic lignin-based adsorbent and its adsorption properties for dyes[J]. Journal of Hazardous Materials, 2019, 369: 50-61. |
20 | WANG Anqi, ZHENG Zhikeng, LI Ruiqi, et al. Biomass-derived porous carbon highly efficient for removal of Pb(Ⅱ) and Cd(Ⅱ)[J]. Green Energy & Environment, 2019, 4(4): 414-423. |
21 | WANG Shichao, BAI Jixing, INNOCENT M T, et al. Lignin-based carbon fibers: formation, modification and potential applications[J]. Green Energy & Environment, 2022, 7(4): 578-605. |
22 | MA Yanli, LING Lü, GUO Yuanru, et al. Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: swelling behaviors and rapid removal of Pb(Ⅱ) ions[J]. Polymer, 2017, 128: 12-23. |
23 | ZHOU Yan, ZHANG Jianping, LUO Xuegang, et al. Adsorption of Hg(Ⅱ) in aqueous solutions using mercapto-functionalized alkali lignin[J]. Journal of Applied Polymer Science, 2014, 131(18). |
24 | LI Zhili, XIAO Duo, GE Yuanyuan, et al. Surface-functionalized porous lignin for fast and efficient lead removal from aqueous solution[J]. ACS Applied Materials & Interfaces, 2015, 7(27): 15000-15009. |
25 | MENG Qingbo, WEBER J. Lignin-based microporous materials as selective adsorbents for carbon dioxide separation[J]. ChemSusChem, 2014, 7(12): 3312-3318. |
26 | ZHU Dailian, QIN Cunqi, AO Shanshi, et al. Hypercrosslinked functionalized lignosulfonates prepared via Friedel-Crafts alkylation reaction for enhancing Pb(Ⅱ) removal from aqueous[J]. Separation Science and Technology, 2019, 54(17): 2830-2839. |
27 | SAFFAR T, BOUAFIF H, BRAGHIROLI F L, et al. Production of bio-based polyol from oxypropylated pyrolytic lignin for rigid polyurethane foam application[J]. Waste and Biomass Valorization, 2020, 11(11): 6411-6427. |
28 | HUANG Mei, LUO Jia, FANG Zhen, et al. Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub- and super-critical ethanol[J]. Applied Catalysis B: Environmental, 2016, 190: 103-114. |
29 | KUANG Wei, LIU Younian, HUANG Jianhan. Phenol-modified hyper-cross-linked resins with almost all micro/mesopores and their adsorption to aniline[J]. Journal of Colloid and Interface Science, 2017, 487: 31-37. |
30 | SHAO Lishu, HUANG Jiehan. Controllable synthesis of N-vinylimidazole-modified hyper-cross-linked resins and their efficient adsorption of p-nitrophenol and o-nitrophenol[J]. Journal of Colloid and Interface Science, 2017, 507: 42-50. |
31 | THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
32 | LIU Na, CHEN Jienan, WU Zhiping, et al. Construction of microporous lignin-based hypercross-linked polymers with high surface areas for enhanced iodine capture[J]. ACS Applied Polymer Materials 2021, 3(4): 2178-2188. |
33 | CHEN Yingfan, SUN Hanxue, YANG Ruixia. Synthesis of conjugated microporous polymer nano-tubes with large surface areas as absorbents for iodine and CO2 uptake[J]. Journal of Materials Chemistry A, 2015, 3(1): 87-91. |
34 | REN Feng, ZHU Zhaoqi, QING Xin, et al. Novel thiophene-bearing conjugated microporous polymer honeycomb-like porous spheres with ultrahigh iodine uptake[J]. Chemical Communications, 2016, 52(63): 9797-9800. |
35 | YIN Zhijian, XU Shunqi, ZHAN Tianguang, et al. Ultrahigh volatile iodine uptake by hollow microspheres formed from a heteropore covalent organic framework[J]. Chemical Communications, 2017, 53(53): 7266-7269. |
36 | LIN Lin, GUAN Heda, ZOU Donglei, et al. A pharmaceutical hydrogen-bonded covalent organic polymer for enrichment of volatile iodine[J]. RSC Advances, 2017, 7(86): 54407-54415. |
37 | GUO Zongxia, SUN Panli, ZHANG Xiao, et al. Amorphous porous organic polymers based on Schiff-base chemistry for highly efficient iodine capture[J]. Chemistry—An Asian Journal, 2018, 13(16): 2046-2053. |
38 | 闫卓君, 元野, 刘佳, 等. 定向合成带电荷多孔芳香骨架材料用于碘单质的捕获和释放[J]. 化学学报, 2016, 74(1): 67-73. |
YAN Zhuojun, YUAN Ye, LIU Jia, et al. Targeted syntheses of charged porous aromatic frameworks for iodine enrichment and release[J]. Acta Chimica Sinica, 2016, 74(1):67-73. | |
39 | HE Xunming, ZHANG Suyun, TANG Xiang, et al. Exploration of 1D channels in stable and high-surface-area covalent triazine polymers for effective iodine removal[J]. Chemical Engineering Journal, 2019, 371:314-318. |
40 | ZAHID M, ZHANG Dongxiang, XU Xiyan, et al. Barbituric and thiobarbituric acid-based UiO-66-NH2 adsorbents for iodine gas capture: Characterization, efficiency and mechanisms[J]. Journal of Hazardous Materials, 2021, 416: 125835. |
41 | ANSARI M, HASSAN A, ALAM A, et al. A mesoporous polymer bearing 3D-Triptycene, -OH and azo- functionalities: Reversible and efficient capture of carbon dioxide and iodine vapor[J]. Microporous and Mesoporous Materials, 2021, 323: 111242. |
42 | HASSAN A, ALAM A, ANSARI M, et al. Hydroxy functionalized triptycene based covalent organic polymers for ultra-high radioactive iodine uptake[J]. Chemical Engineering Journal, 2022, 427: 130950. |
43 | XIE Wei, CUI Di, Zhang Shuran, et al. Iodine capture in porous organic polymers and metal-organic frameworks materials[J]. Materials Horizons, 2019, 6: 1571-1595. |
44 | XIONG Shaohui, TANG Xiang, PAN Chunyue, et al. Carbazole-bearing porous organic polymers with a mulberry-like morphology for efficient iodine capture[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27335-27342. |
45 | YU Mengtian, GUO Yanzhu, WANG Xing, et al. Lignin-based electrospinning nanofibers for reversible iodine capture and potential applications[J]. International Journal of Biological Macromolecules, 2022, 208: 782-793. |
46 | CHANGANI Z, RAZMJOU A, TAHERI-KAFRANI A, et al. Surface modification of polypropylene membrane for the removal of iodine using polydopamine chemistry[J]. Chemosphere, 2020, 249: 126079. |
47 | LI Xuemei, PENG Yu, JIA Qiong. Construction of hypercrosslinked polymers with dual nitrogen-enriched building blocks for efficient iodine capture[J]. Separation and Purification Technology, 2020, 236: 116260. |
[1] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[2] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[3] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[4] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[5] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[6] | GUAN Hongling, YANG Hui, JING Hongquan, LIU Yuqiong, GU Shouyu, WANG Haobin, HOU Cuihong. Lignin-based controlled release materials and application in drug delivery and fertilizer controlled-release [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3695-3707. |
[7] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[8] | REN Jianpeng, WU Caiwen, LIU Huijun, WU Wenjuan. Preparation of lignin-polyaniline composites and adsorption of Congo red [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3087-3096. |
[9] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[10] | YANG Farong, GU Lili, LIU Yang, LI Weixue, CAI Jieyun, WANG Huiping. Preparation and application of molecularly imprinted polymers of terbutylazine assisted by computer simulation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3157-3166. |
[11] | YANG Jiatian, TANG Jinming, LIANG Zirong, LI Yinhong, HU Huayu, CHEN Yuan. Preparation and application of novel starch-based super absorbent polymer dust suppressant [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3187-3196. |
[12] | HE Zhiyong, GUO Tianfo, WANG Jinli, LYU Feng. Progress of CO2/epoxide copolymerization catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1847-1859. |
[13] | ZHAO Chongyang, ZHAO Lei, SHI Xiangwen, HUANG Jun, LI Zhiyao, SHEN Kai, ZHANG Yaping. Effect of O2/H2O/SO2 on the adsorption of PbCl2 by modified iron-rich attapulgite at high temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2190-2200. |
[14] | SHANG Yu, XIAO Man, CUI Qiufang, TU Te, YAN Shuiping. Recovery characteristics of PVDF/BN-OH flat composite membrane for waste heat of hot stripped gas in CO2 capture process [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1618-1628. |
[15] | ZHANG Yixuan, HU Wei, LIU Mengyao, JU Jingge, ZHAO Yixia, KANG Weimin. Research progress of polymer electrolytes in zinc-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1397-1410. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |