Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (10): 5474-5493.DOI: 10.16085/j.issn.1000-6613.2022-0016
• Materials science and technology • Previous Articles Next Articles
WANG Xiaoyu1(), HU Ping1(), CAO Qigao2(), LI Shilei1, HU Boliang1, GE Songwei1, YANG Fan1, CHEN Bo1, ZHU Xinyu1, WANG Kuaishe1
Received:
2022-01-04
Revised:
2022-03-30
Online:
2022-10-21
Published:
2022-10-20
Contact:
HU Ping, CAO Qigao
汪小钰1(), 胡平1(), 操齐高2(), 李世磊1, 胡卜亮1, 葛松伟1, 杨帆1, 陈波1, 朱昕宇1, 王快社1
通讯作者:
胡平,操齐高
作者简介:
汪小钰(1998—),女,硕士研究生,研究方向为功能材料。E-mail:wangxiaoyu4032@163.com。
基金资助:
CLC Number:
WANG Xiaoyu, HU Ping, CAO Qigao, LI Shilei, HU Boliang, GE Songwei, YANG Fan, CHEN Bo, ZHU Xinyu, WANG Kuaishe. Latest research progress of multifunctional flexible sensors with different modes[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5474-5493.
汪小钰, 胡平, 操齐高, 李世磊, 胡卜亮, 葛松伟, 杨帆, 陈波, 朱昕宇, 王快社. 不同模式多功能柔性传感器研究进展[J]. 化工进展, 2022, 41(10): 5474-5493.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0016
材料 | 模式 | 工作机制 | 灵敏度 | 工作范围 | 稳定性 | 参考文献 |
---|---|---|---|---|---|---|
褶皱MXene薄膜 | 压力 | 摩擦电 | 2.35V·kPa-1 | 0.3~1.0kPa | 500 | [ |
应变 | 电阻 | — | 400% | 100 | ||
MX@SiNPs棉纤维 | 压力 | 电阻 | 12.23kPa-1 | 8.8Pa~70kPa | 1000 | [ |
弯曲/扭曲 | 电阻 | — | 0~180°/0~628rad·m-1 | — | ||
3D GMC-PDMS膜 | 压力 | 电阻 | 0.5kPa-1 | 约50kPa | 6800 | [ |
应变 | 电阻 | 灵敏系数(GF)=10/15/5 | 90% | 1050 | ||
CCH | 压力 | 电阻 | 0.62kPa-1 | 0~1.0kPa | 1500 | [ |
应变 | 电阻 | GF=3.4 | 0~300% | — | ||
GLIG | 压力 | 电阻 | 678.2kPa-1 | 1~500kPa | 7000 | [ |
应变 | 电阻 | 2203.5 | 0~10% | 15000 | ||
空心MXene球/AgNWs | 压力 | 电容 | 0.02kPa-1 | 0~40kPa | 1000 | [ |
应变 | 电阻 | GF=39 | 0~40% | 2000 | ||
3D-TGS | 压力 | 电阻 | — | 5~20kPa | — | [ |
应变 | 电阻 | — | 0~20% | 3000 |
材料 | 模式 | 工作机制 | 灵敏度 | 工作范围 | 稳定性 | 参考文献 |
---|---|---|---|---|---|---|
褶皱MXene薄膜 | 压力 | 摩擦电 | 2.35V·kPa-1 | 0.3~1.0kPa | 500 | [ |
应变 | 电阻 | — | 400% | 100 | ||
MX@SiNPs棉纤维 | 压力 | 电阻 | 12.23kPa-1 | 8.8Pa~70kPa | 1000 | [ |
弯曲/扭曲 | 电阻 | — | 0~180°/0~628rad·m-1 | — | ||
3D GMC-PDMS膜 | 压力 | 电阻 | 0.5kPa-1 | 约50kPa | 6800 | [ |
应变 | 电阻 | 灵敏系数(GF)=10/15/5 | 90% | 1050 | ||
CCH | 压力 | 电阻 | 0.62kPa-1 | 0~1.0kPa | 1500 | [ |
应变 | 电阻 | GF=3.4 | 0~300% | — | ||
GLIG | 压力 | 电阻 | 678.2kPa-1 | 1~500kPa | 7000 | [ |
应变 | 电阻 | 2203.5 | 0~10% | 15000 | ||
空心MXene球/AgNWs | 压力 | 电容 | 0.02kPa-1 | 0~40kPa | 1000 | [ |
应变 | 电阻 | GF=39 | 0~40% | 2000 | ||
3D-TGS | 压力 | 电阻 | — | 5~20kPa | — | [ |
应变 | 电阻 | — | 0~20% | 3000 |
类型 | 常见材料 | 优点 | 传感性能 |
---|---|---|---|
纳米金属 | 银纳米颗粒/线、金纳米颗粒、铂纳米颗粒 | 高导电性 | 压力、应变、温度 |
纳米碳 | 炭黑、碳纳米管、石墨烯及其衍生物、碳化物(MXenes) | 高导电性、高机械性、易功能化、成本低 | 压力、应变、温度、湿度、pH、化学气体 |
导电聚合物 | 聚苯胺、聚吡咯、聚偏二氟乙烯、PEDOT:PSS | 弹性好、易功能化 | 压力、应变、温度 |
类型 | 常见材料 | 优点 | 传感性能 |
---|---|---|---|
纳米金属 | 银纳米颗粒/线、金纳米颗粒、铂纳米颗粒 | 高导电性 | 压力、应变、温度 |
纳米碳 | 炭黑、碳纳米管、石墨烯及其衍生物、碳化物(MXenes) | 高导电性、高机械性、易功能化、成本低 | 压力、应变、温度、湿度、pH、化学气体 |
导电聚合物 | 聚苯胺、聚吡咯、聚偏二氟乙烯、PEDOT:PSS | 弹性好、易功能化 | 压力、应变、温度 |
15 | HOREV Yehu David, MAITY Arnab, ZHENG Youbin, et al. Stretchable and highly permeable nanofibrous sensors for detecting complex human body motion[J]. Advanced Materials, 2021, 33(41): 2102488. |
16 | JIANG Xiaoping, REN Zongling, FU Yafei, et al. Highly compressible and sensitive pressure sensor under large strain based on 3D porous reduced graphene oxide fiber fabrics in wide compression strains[J]. ACS Applied Materials & Interfaces, 2019, 11(40): 37051-37059. |
17 | WANG Lin, ZHANG Meiyun, YANG Bin, et al. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor[J]. ACS Nano, 2020, 14(8): 10633-10647. |
18 | XU Chuanhui, ZHENG Zhongjie, LIN Mengzhuan, et al. Strengthened, antibacterial, and conductive flexible film for humidity and strain sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(31): 35482-35492. |
19 | SUSHMITHA Veeralingam, SUSHMEE Badhulika. Bi2S3/PVDF/ppy-based freestanding, wearable, transient nanomembrane for ultrasensitive pressure, strain, and temperature sensing[J]. ACS Applied Bio Materials, 2021, 4(1): 14-23. |
20 | AMJADI Morteza, PICHITPAJONGKIT Aekachan, LEE Sangjun, et al. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite[J]. ACS Nano, 2014, 8(5): 5154-5163. |
21 | WENG Dehui, XU Fuchang, LI Xiang, et al. Polymeric complex-based transparent and healable ionogels with high mechanical strength and ionic conductivity as reliable strain sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57477-57485. |
22 | JIA Lichuan, ZHOU Changge, DAI Kun, et al. Facile fabrication of highly durable superhydrophobic strain sensors for subtle human motion detection[J]. Journal of Materials Science & Technology, 2022, 110: 35-42. |
23 | LIU Libing, ZHANG Xuezhong, XIANG Dong, et al. Highly stretchable, sensitive and wide linear responsive fabric-based strain sensors with a self-segregated carbon nanotube (CNT)/polydimethylsiloxane (PDMS) coating[J]. Progress in Natural Science: Materials International, 2022, 32(1): 34-42. |
24 | TRUNG Tran Quang, DANG Thi My Linh, RAMASUNDARAM Subramaniyan, et al. A stretchable strain-insensitive temperature sensor based on free-standing elastomeric composite fibers for on-body monitoring of skin temperature[J]. ACS Applied Materials & Interfaces, 2019, 11(2): 2317-2327. |
25 | WANG Zhenyu, GAO Weilian, ZHANG Qiang, et al. 3D-printed graphene/polydimethylsiloxane composites for stretchable and strain-insensitive temperature sensors[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 1344-1352. |
26 | YAMADA Shunsuke, TOSHIYOSHI Hiroshi. Temperature sensor with a water-dissolvable ionic gel for ionic skin[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36449-36457. |
27 | ZHANG Zuocai, LU Tianyun, YANG Dan, et al. A high-wet-strength biofilm for readable and highly sensitive humidity sensors[J]. Nano Letters, 2021, 21(21): 9030-7. |
28 | WANG Yang, ZHANG Lina, ZHOU Jinping, et al. Flexible and transparent cellulose-based ionic film as a humidity sensor[J]. ACS Applied Materials & Interfaces, 2020, 12(6): 7631-7638. |
29 | WU Jianhui, YIN Changshuai, ZHOU Jian, et al. Ultrathin glass-based flexible, transparent, and ultrasensitive surface acoustic wave humidity sensor with ZnO nanowires and graphene quantum dots[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39817-39825. |
30 | HUANG Kaiyan, NING Huiming, HU Ning, et al. Ultrasensitive MWCNT/PDMS composite strain sensor fabricated by laser ablation process[J]. Composites Science and Technology, 2020, 192: 108105. |
31 | JIA Guangwen, ZHENG Ao, WANG Xiao, et al. Flexible, biocompatible and highly conductive MXene-graphene oxide film for smart actuator and humidity sensor[J]. Sensors and Actuators B: Chemical, 2021, 346: 130507. |
32 | HE Haoxuan, ZHAO Chenxi, XU Jing, et al. Exploiting free-standing p-CuO/n-TiO2 nanochannels as a flexible gas sensor with high sensitivity for H2S at room temperature[J]. ACS Sensors, 2021, 6(9): 3387-3397. |
33 | TAN Haotian, CHU Yingli, WU Xiaohan, et al. High-performance flexible gas sensors based on layer-by-layer assembled polythiophene thin films[J]. Chemistry of Materials, 2021, 33(19): 7785-7794. |
34 | YAN Wenhao, YAN Wenrong, CHEN Tiandi, et al. Size-tunable flowerlike MoS2 nanospheres combined with laser-induced graphene electrodes for NO2 sensing [J]. ACS Applied Nano Materials, 2020, 3(3): 2545-2453. |
35 | KIM Jong-Woo, PORTE Yoann, Kyung Yong KO, et al. Micropatternable double-faced ZnO nanoflowers for flexible gas sensor[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 32876-32886. |
36 | CHEN Jianwen, ZHU Yutian, CHANG Xiaohua, et al. Recent progress in essential functions of soft electronic skin[J]. Advanced Functional Materials, 2021, 31(42): 2104686. |
37 | WU Yuting, YAN Tao, PAN Zhijuan. Wearable carbon-based resistive sensors for strain detection: a review[J]. IEEE Sensors Journal, 2021, 21(4): 4030-4043. |
38 | 鲍艳, 郑茜, 郭茹月. 柔性可降解压力传感器关键制备材料的研究进展[J]. 化工进展, 2022, 41(7): 3624-3635. |
BAO Yan, ZHENG Xi, GUO Ruyue. Recent progress of key materials for flexible degradable pressure sensors [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3624-3635. | |
39 | CHEN Song, LIU Shuqi, WANG Pingping, et al. Highly stretchable fiber-shaped e-textiles for strain/pressure sensing, full-range human motions detection, health monitoring, and 2D force mapping[J]. Journal of Materials Science, 2018, 53(4): 2995-3005. |
40 | WANG Jian, ZHANG Congcong, CHEN Duo, et al. Fabrication of a sensitive strain and pressure sensor from gold nanoparticle-assembled 3D-interconnected graphene microchannel-embedded PDMS[J]. ACS Applied Materials & Interfaces, 2020, 12(46): 51854-51863. |
1 | WU Xiaomin, LI Enlong, LIU Yaqian, et al. Artificial multisensory integration nervous system with haptic and iconic perception behaviors[J]. Nano Energy, 2021, 85: 106000. |
2 | LI Ling, ZHANG Jianyu, YANG Chenyi, et al. Stimuli-responsive materials from ferrocene-based organic small molecule for wearable sensors[J]. Small, 2021, 17(46): 2103125. |
3 | KIM Seunghwan, AMJADI Morteza, LEE Tae-Ik, et al. Wearable, ultrawide-range, and bending-insensitive pressure sensor based on carbon nanotube network-coated porous elastomer sponges for human interface and healthcare devices[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23639-23648. |
4 | WANG Hongchen, ZHOU Ruicong, LI Donghai, et al. High-performance foam-shaped strain sensor based on carbon nanotubes and Ti3C2T x MXene for the monitoring of human activities[J]. ACS Nano, 2021, 15(6): 9690-9700. |
5 | CHOI Suji, HAN Sang Ihn, JUNG Dongjun, et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics[J]. Nature Nanotechnology, 2018, 13(11): 1048-1056. |
6 | CAO Yule, GUO Yinben, CHEN Zixi, et al. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection[J]. Nano Energy, 2022, 92: 106689. |
7 | CLEVENGER Michael, KIM Hyeonghun, SONG Han Wook, et al. Binder-free printed PEDOT wearable sensors on everyday fabrics using oxidative chemical vapor deposition[J]. Science Advances, 2021, 7(42): eabj8958. |
8 | YANG T, DENG W, CHU X, et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics[J]. ACS Nano, 2021, 15: 1027-1038. |
9 | LI Zixiu, WANG Jian, XU Yongjian, et al. Green and sustainable cellulose-derived humidity sensors: a review[J]. Carbohydrate Polymers, 2021, 270: 118385. |
10 | 唐子龙, 郝远强, 刘又年. 基于薄层黑磷的电化学传感器研究新进展[J]. 化工进展, 2022, 41(4): 1925-1940. |
TANG Zilong, HAO Yuanqiang, LIU Younian. Recent progress of electrochemical sensors based on layered black phosphorus [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1925-1940. | |
11 | 何崟, 周艺颖, 刘皓, 等. 基于碳材料的柔性压力传感器研究进展[J]. 化工进展, 2018, 37(7): 2664-2671. |
41 | Jingchun LYU, LIU Zeng, ZHANG Long, et al. Multifunctional polypyrrole and rose-like silver flower-decorated e-textile with outstanding pressure/strain sensing and energy storage performance[J]. Chemical Engineering Journal, 2022, 427: 130823. |
42 | ZHAO Xuefeng, WEN Xiaohong, ZHONG Shulin, et al. Hollow MXene sphere-based flexible e-skin for multiplex tactile detection[J]. ACS Applied Materials & Interfaces, 2021, 13(38): 45924-45934. |
43 | LI Qiushi, WU Tongyu, ZHAO Wei, et al. Laser-induced corrugated graphene films for integrated multimodal sensors[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37433-37444. |
44 | ZHAO Xuefeng, WEN Xiaohong, SUN Peng, et al. Spider web-like flexible tactile sensor for pressure-strain simultaneous detection[J]. ACS Applied Materials & Interfaces, 2021, 13(8): 10428-10436. |
45 | WANG Shuang, DU Xiaosheng, LUO Yaofa, et al. Hierarchical design of waterproof, highly sensitive, and wearable sensing electronics based on MXene-reinforced durable cotton fabrics[J]. Chemical Engineering Journal, 2021, 408: 127363. |
46 | YU Xiaohui, ZHENG Yong, ZHANG Haopeng, et al. Fast-recoverable, self-healable, and adhesive nanocomposite hydrogel consisting of hybrid nanoparticles for ultrasensitive strain and pressure sensing[J]. Chemistry of Materials, 2021, 33(15): 6146-6157. |
47 | SARWAR Mirza Saquib, DOBASHI Yuta, PRESTON Claire, et al. Bend, stretch, and touch: locating a finger on an actively deformed transparent sensor array[J]. Science Advances, 2017, 3(3): e1602200. |
48 | WEI Huige, KONG Deshuo, LI Tuo, et al. Solution-processable conductive composite hydrogels with multiple synergetic networks toward wearable pressure/strain sensors[J]. ACS Sensors, 2021, 6(8): 2938-2951. |
49 | WANG Tao, ZHANG Ying, LIU Qingchang, et al. A self-healable, highly stretchable, and solution processable conductive polymer composite for ultrasensitive strain and pressure sensing[J]. Advanced Functional Materials, 2018, 28(7): 1705551. |
50 | 王雨柔, 王国琪, 李想, 等. 溶液法制备柔性压阻式传感器的研究进展[J]. 化学学报, 2022, 80(2): 214-228. |
WANG Yurou, WANG Guoqi, LI Xiang, et al. Research progress of flexible piezoresistive sensors prepared by solution-based processing[J]. Acta Chimica Sinica, 2022, 80(2): 214-228. | |
51 | ZHU Pengcheng, WANG Yalong, WANG Yao, et al. Human-machine interactions: flexible 3D architectured piezo/thermoelectric bimodal tactile sensor array for E-skin application [J]. Advanced Energy Materials, 2020, 10(39): 2070161. |
52 | WANG Yaling, ZHU Wei, DENG Yuan, et al. High-sensitivity self-powered temperature/pressure sensor based on flexible Bi-Te thermoelectric film and porous microconed elastomer[J]. Journal of Materials Science & Technology, 2022, 103: 1-7. |
53 | ZHU Lingfeng, WANG Yancheng, MEI Deqing, et al. Fully elastomeric fingerprint-shaped electronic skin based on tunable patterned graphene/silver nanocomposites[J]. ACS Applied Materials & Interfaces, 2020, 12(28): 31725-31737. |
54 | ZHENG Shaodi, JIANG Yuanping, WU Xiaotian, et al. Highly sensitive pressure sensor with broad linearity via constructing a hollow structure in polyaniline/polydimethylsiloxane composite[J]. Composites Science and Technology, 2021, 201: 108546. |
55 | SANG Mingyu, KANG Kyowon, ZHANG Yue, et al. Ultrahigh sensitive Au-doped silicon nanomembrane based wearable sensor arrays for continuous skin temperature monitoring with high precision[J]. Advanced Materials, 2022, 34(4): e2105865. |
56 | HOU Wenwen, LUAN Zhaohui, XIE Dan, et al. High performance dual strain-temperature sensor based on alginate nanofibril/graphene oxide/polyacrylamide nanocomposite hydrogel[J]. Composites Communications, 2021, 27: 100837. |
57 | LIN Mengzhuan, ZHENG Zhongjie, YANG Li, et al. A high-performance, sensitive, wearable multifunctional sensor based on rubber/CNT for human motion and skin temperature detection[J]. Advanced Materials, 2022, 34(1): 2107309. |
58 | MIN Hyeongho, BAIK Sangyul, KIM Jinhyung, et al. Tough carbon nanotube-implanted bioinspired three-dimensional electrical adhesive for isotropically stretchable water-repellent bioelectronics[J]. Advanced Functional Materials, 2022, 32(8): 2107285. |
59 | YANG Yan, ZHAO Guojie, CHENG Xi, et al. Stretchable and healable conductive elastomer based on PEDOT:PSS/natural rubber for self-powered temperature and strain sensing[J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14599-14611. |
60 | JANG Gwon Neung, HONG Soo Yeong, PARK Heun, et al. Highly sensitive pressure and temperature sensors fabricated with poly(3-hexylthiophene-2,5-diyl)-coated elastic carbon foam for bio-signal monitoring[J]. Chemical Engineering Journal, 2021, 423: 130197. |
61 | LEE Jeng Hun, KIM Eunyoung, ZHANG Heng, et al. Rational design of all resistive multifunctional sensors with stimulus discriminability[J]. Advanced Functional Materials, 2022, 32(1): 2107570. |
62 | DUAN Zaihua, JIANG Yadong, TAI Huiling. Recent advances in humidity sensors for human body related humidity detection[J]. Journal of Materials Chemistry C, 2021, 9(42): 14963-14980. |
63 | ZHENG Yanjun, LI Yilong, DAI Kun, et al. A highly stretchable and stable strain sensor based on hybrid carbon nanofillers/polydimethylsiloxane conductive composites for large human motions monitoring[J]. Composites Science and Technology, 2018, 156: 276-286. |
64 | OUYANG Yue, WANG Xuechuan, HOU Mengdi, et al. Skin-inspired wearable self-powered electronic skin with tunable sensitivity for real-time monitoring of sleep quality[J]. Nano Energy, 2022, 91: 106682. |
65 | ZHAO Jing, WEI Zheng, LI Zhongyi, et al. Skin-inspired high-performance active-matrix circuitry for multimodal user-interaction[J]. Advanced Functional Materials, 2021, 31(38): 2105480. |
66 | KHALIFA Mohammed, WUZELLA Guenter, LAMMER Herfried, et al. Smart paper from graphene coated cellulose for high-performance humidity and piezoresistive force sensor[J]. Synthetic Metals, 2020, 266: 116420. |
67 | MIAO Liming, WAN Ji, SONG Yu, et al. Skin-inspired humidity and pressure sensor with a wrinkle-on-sponge structure[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 39219-39227. |
68 | ZENG Sheng, ZHANG Junyao, ZU Guoqing, et al. Transparent, flexible, and multifunctional starch-based double-network hydrogels as high-performance wearable electronics[J]. Carbohydrate Polymers, 2021, 267: 118198. |
69 | LU Qixin, CHEN Hong, ZENG Yuanming, et al. Intelligent facemask based on triboelectric nanogenerator for respiratory monitoring[J]. Nano Energy, 2022, 91: 106612. |
70 | TANG Xinyue, YANG Weidong, YIN Shuran, et al. Controllable graphene wrinkle for a high-performance flexible pressure sensor[J]. ACS Applied Materials & Interfaces, 2021, 13(17): 20448-20458. |
71 | WEI Peiran, LENG Houming, CHEN Qiyi, et al. Reprocessable 3D-printed conductive elastomeric composite foams for strain and gas sensing[J]. ACS Applied Polymer Materials, 2019, 1(4): 885-892. |
72 | WON Chihyeong, LEE Sanggeun, JUNG Han Hee, et al. Ultrasensitive and stretchable conductive fibers using percolated Pd nanoparticle networks for multisensing wearable electronics: crack-based strain and H2 sensors [J]. ACS Applied Materials & Interfaces, 2020, 12(40): 45243-53. |
73 | ZHI Hui, ZHANG Xiaobo, WANG Fengya, et al. Flexible Ti3C2T x MXene/PANI/bacterial cellulose aerogel for e-skins and gas sensing[J]. ACS Applied Materials & Interfaces, 2021, 13(38): 45987-45994. |
74 | NAKATA Shogo, SHIOMI Mao, FUJITA Yusuke, et al. A wearable pH sensor with high sensitivity based on a flexible charge-coupled device[J]. Nature Electronics, 2018, 1(11): 596-603. |
75 | LU Yuyao, FUJITA Yusuke, HONDA Satoko, et al. Wireless and flexible skin moisture and temperature sensor sheets toward the study of thermoregulator center[J]. Advanced Healthcare Materials, 2021, 10(17): 2170078. |
76 | HUANG Xuewu, LI Bei, WANG Ling, et al. Superhydrophilic, underwater superoleophobic, and highly stretchable humidity and chemical vapor sensors for human breath detection[J]. ACS Applied Materials & Interfaces, 2019, 11(27): 24533-24543. |
77 | Yong Suk OH, KIM Jae-Hwan, XIE Zhaoqian, et al. Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries[J]. Nature Communications, 2021, 12(1): 5008. |
78 | HAN Shaobo, JIAO Fei, KHAN Zia Ullah, et al. Thermoelectric polymer aerogels for pressure-temperature sensing applications[J]. Advanced Functional Materials, 2017, 27(44): 1703549. |
79 | YANG Shuaitao, LI Chengwei, WEN Ningxuan, et al. All-fabric-based multifunctional textile sensor for detection and discrimination of humidity, temperature, and strain stimuli[J]. Journal of Materials Chemistry C, 2021, 9(39): 13789-13798. |
80 | ZHANG Chao, ZHOU Yongsen, HAN Haijie, et al. Dopamine-triggered hydrogels with high transparency, self-adhesion, and thermoresponse as skinlike sensors[J]. ACS Nano, 2021, 15(1): 1785-1794. |
81 | LIU Jing, WANG Haiyan, Rongxian OU, et al. Anti-bacterial silk-based hydrogels for multifunctional electrical skin with mechanical-thermal dual sensitive integration[J]. Chemical Engineering Journal, 2021, 426: 130722. |
82 | ZU Guoqing, KANAMORI Kazuyoshi, NAKANISHI Kazuki, et al. Superhydrophobic ultraflexible triple-network graphene/polyorganosiloxane aerogels for a high-performance multifunctional temperature/strain/pressure sensing array[J]. Chemistry of Materials, 2019, 31(16): 6276-6285. |
83 | QIAN Cuncun, LI Lihong, GAO Meng, et al. All-printed 3D hierarchically structured cellulose aerogel based triboelectric nanogenerator for multi-functional sensors[J]. Nano Energy, 2019, 63: 103885. |
84 | CHEN Weixing, WANG Zhiwen, LI Qiuzhao, et al. Hollow polyaniline microsphere functionalized paper with multimodal sensitivity to strain, humidity, and pressure[J]. ACS Applied Electronic Materials, 2020, 2(1): 247-253. |
85 | LIN Rongzhou, KIM Han-Joon, ACHAVANANTHADITH Sippanat, et al. Wireless battery-free body sensor networks using near-field-enabled clothing[J]. Nature Communications, 2020, 11(1): 444. |
86 | BI Siyi, HOU Lei, LU Yinxiang. An integrated wearable strain, temperature and humidity sensor for multifunctional monitoring[J]. Composites A: Applied Science and Manufacturing, 2021, 149: 106504. |
87 | YUE Ouyang, WANG Xuechuan, LIU Xinhua, et al. Spider-web and ant-tentacle doubly bio-inspired multifunctional self-powered electronic skin with hierarchical nanostructure[J]. Advanced Science, 2021, 8(15): 2004377. |
88 | LIN Xiuzhu, LI Fan, BING Yu, et al. Biocompatible multifunctional e-skins with excellent self-healing ability enabled by clean and scalable fabrication[J]. Nano-Micro Letters, 2021, 13(1): 200. |
89 | LI Chengwei, YANG Shuaitao, GUO Yuan, et al. Flexible, multi-functional sensor based on all-carbon sensing medium with low coupling for ultrahigh-performance strain, temperature and humidity sensing[J]. Chemical Engineering Journal, 2021, 426: 130364. |
90 | HAN Shaobo, ALVI Naveed Ul Hassan, Lars GRANLÖF, et al. A multiparameter pressure-temperature-humidity sensor based on mixed ionic-electronic cellulose aerogels[J]. Advanced Science, 2019, 6(8): 1802128. |
91 | GAO Yang, JIA Fei, GAO Guanghui. Ultra-thin, transparent, anti-freezing organohydrogel film responded to a wide range of humidity and temperature[J]. Chemical Engineering Journal, 2022, 430: 132919. |
92 | CHEN Jianwen, WANG Fei, ZHU Guoxuan, et al. Breathable strain/temperature sensor based on fibrous networks of ionogels capable of monitoring human motion, respiration, and proximity[J]. ACS Applied Materials & Interfaces, 2021, 13(43): 51567-51577. |
93 | Zhao S, Zhu R. Electronic skin with multifunction sensors based on thermosensation[J]. Advanced Materials, 2017, 29(15): 1606151. |
94 | KHATIB Muhammad, ZOHAR Orr, SALIBA Walaa, et al. A multifunctional electronic skin empowered with damage mapping and autonomic acceleration of self-healing in designated locations[J]. Advanced Materials, 2020, 32(17): e2000246. |
95 | GUO Hongshuang, BAI Ming, ZHU Yingnan, et al. Pro-healing zwitterionic skin sensor enables multi-indicator distinction and continuous real-time monitoring[J]. Advanced Functional Materials, 2021, 31(50): 2106406. |
96 | HUA Qilin, SUN Junlu, LIU Haitao, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing[J]. Nature Communications, 2018, 9(1): 244. |
97 | WEI Y H, LI X S, WANG Y F, et al. Graphene-based multifunctional textile for sensing and actuating[J]. ACS Nano, 2021, 15(11): 17738-17747. |
98 | WANG Haihang, CEN Yuemei, ZENG Xiangqiong. Highly sensitive flexible tactile sensor mimicking the microstructure perception behavior of human skin[J]. ACS Applied Materials & Interfaces, 2021, 13(24): 28538-28545. |
99 | HE Peng, GUO Runsheng, HU Kui, et al. Tough and super-stretchable conductive double network hydrogels with multiple sensations and moisture-electric generation[J]. Chemical Engineering Journal, 2021, 414: 128726. |
11 | HE Yin, ZHOU Yiying, LIU Hao, et al. Research progress of flexible pressure sensors based on carbon materials[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2664-2671. |
12 | FU Xuemei, LI Jiaxin, TANG Chengqiang, et al. Hydrogel cryo-microtomy continuously making soft electronic devices[J]. Advanced Functional Materials, 2021, 31(7): 2008355. |
13 | CHO Kyung Gook, AN Sol, CHO Dae Hyun, et al. Block copolymer-based supramolecular ionogels for accurate on-skin motion monitoring[J]. Advanced Functional Materials, 2021, 31(36): 2102386. |
14 | GUO Yunjian, WEI Xiao, GAO Song, et al. Recent advances in carbon material-based multifunctional sensors and their applications in electronic skin systems[J]. Advanced Functional Materials, 2021, 31(40): 2104288. |
100 | LIU Hanbin, XIANG Huacui, WANG Yao, et al. A flexible multimodal sensor that detects strain, humidity, temperature, and pressure with carbon black and reduced graphene oxide hierarchical composite on paper[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40613-40619. |
101 | XU Jingxuan, BAN Chaoyi, XIU Fei, et al. Multimode visualization of electronic skin from bioinspired colorimetric sensor[J]. ACS Applied Materials & Interfaces, 2021, 13(25): 30205-30212. |
102 | LU Lijun, YANG Bin, LIU Jingquan. Flexible multifunctional graphite nanosheet/electrospun-polyamide 66 nanocomposite sensor for ECG, strain, temperature and gas measurements[J]. Chemical Engineering Journal, 2020, 400: 125928. |
103 | ZHANG Min, SUN Jiaxing Jeccy, KHATIB Muhammad, et al. Time-space-resolved origami hierarchical electronics for ultrasensitive detection of physical and chemical stimuli[J]. Nature Communications, 2019, 10(1): 1120. |
[1] | CAI Chuyue, FANG Xiaoming, LING Ziye, ZHANG Zhengguo. Research progress on thermal conductivity enhancement and form stability improvement of phase change thermal interface materials [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4907-4917. |
[2] | LI Xuegang, XIAO Wende. Progress and prospects of electronic-grade monosilane commercialization in China [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5231-5235. |
[3] | YANG Xiaoxing, MIAO He, YUAN Jinliang. Research progress on oxygen electrode materials for reversible solid oxide fuel cells [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4904-4917. |
[4] | Zhongming LI, Bin LI, Sirui WU, Liangcheng ZHAO. Research progress in manufacturing flexible sensors based on 3D printing technology [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1835-1843. |
[5] | Yujie WANG,Tingjun FU,Zhe MA,Juan SHAO,Qian MA,Han LI,Yuhang GUO,Liping CUI,Zhong LI. Recent progress on the control of microporous channel for ZSM-5 catalyst in methanol to hydrocarbon [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4554-4563. |
[6] | Runyang LIU,Tinggui YAN,Ting ZHANG,Mengkui TIAN. A review on the microfabrication of ceramic microreactors [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3508-3516. |
[7] | HE Yin, ZHOU Yiying, LIU Hao, SUN Keke, LI Xiaojiu, WANG Xiaoyun. Research progress of flexible pressure sensors based on carbon materials [J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2664-2671. |
[8] | CHEN Jianjun, HUANG Yuewen, LIANG Caizhen, WANG Bin. Fabrication and electromagnetic interference (EMI) shielding properties of porous functional multi-walled carbon nanotubes/epoxy composites [J]. Chemical Industry and Engineering Progress, 2018, 37(02): 664-672. |
[9] | ZHOU Lüshan, LAI Chuan, WANG Fen, HE Pan. Progress in fabrication and applications of porous calcium carbonate [J]. Chemical Industry and Engineering Progress, 2018, 37(01): 159-167. |
[10] | LIU Yang, GU Ping, ZHANG Guanghui. Fabrication of graphene oxide-assisted membranes and its applications in water treatment and purification [J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4151-4159. |
[11] | HU Feiyan, HU Jing, REN Biye. Synthesis and properties of high refractive index silicone resin for high power LED encapsulation [J]. Chemical Industry and Engineering Progree, 2017, 36(02): 634-640. |
[12] | GE Yang, JIANG Weiting. The research progress and application of the micro-channel heat exchanger [J]. Chemical Industry and Engineering Progree, 2016, 35(S1): 10-15. |
[13] | LUO Zhongyang, WANG Shaopeng, FANG Mengxiang, WANG Hao, WANG Qinhui. Further processing and prospect of coal tar pitch utilization [J]. Chemical Industry and Engineering Progree, 2016, 35(02): 611-616. |
[14] | SHI Xue, GAO Tingting, ZHOU Guowei. Progress in the preparation and application of transition-metal compounds multiple-shell hollow spheres [J]. Chemical Industry and Engineering Progree, 2015, 34(11): 3951-3958,3989. |
[15] | WANG Jie, WANG Qian. Development and expectation of heat-pipe technology and wick research [J]. Chemical Industry and Engineering Progree, 2015, 34(04): 891-902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |