Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (10): 5236-5246.DOI: 10.16085/j.issn.1000-6613.2022-0024
• Chemical processes and equipment • Previous Articles Next Articles
LI Dan(), YANG Siyu(), QIAN Yu()
Received:
2022-01-04
Revised:
2022-04-29
Online:
2022-10-21
Published:
2022-10-20
Contact:
YANG Siyu, QIAN Yu
通讯作者:
杨思宇,钱宇
作者简介:
李丹(1997—),女,硕士研究生,研究方向为过程系统工程。E-mail:201920122698@mail.scut.edu.cn。
基金资助:
CLC Number:
LI Dan, YANG Siyu, QIAN Yu. Syngas cryogenic separation process combined with lithium bromide absorption refrigeration and organic Rankine cycle[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5236-5246.
李丹, 杨思宇, 钱宇. 耦合溴化锂吸收式制冷与有机朗肯循环的合成气深冷分离工艺[J]. 化工进展, 2022, 41(10): 5236-5246.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2022-0024
参数 | 原料合成气 | 混合制冷剂 |
---|---|---|
摩尔流量/kmol·h-1 | 4573 | 3749 |
质量流量/t·h-1 | 49.5 | 107.3 |
温度/℃ | 35 | 20 |
压力/MPa | 3.3 | 0.1 |
摩尔分数/% | ||
H2 | 61.57 | |
CO | 27.22 | |
CH4 | 10.26 | 27.74 |
N2+AR | 0.24 | |
C2H6 | 0.71 | |
N2 | 2.97 | |
C3H8 | 24.27 | |
C2H4 | 45.02 |
参数 | 原料合成气 | 混合制冷剂 |
---|---|---|
摩尔流量/kmol·h-1 | 4573 | 3749 |
质量流量/t·h-1 | 49.5 | 107.3 |
温度/℃ | 35 | 20 |
压力/MPa | 3.3 | 0.1 |
摩尔分数/% | ||
H2 | 61.57 | |
CO | 27.22 | |
CH4 | 10.26 | 27.74 |
N2+AR | 0.24 | |
C2H6 | 0.71 | |
N2 | 2.97 | |
C3H8 | 24.27 | |
C2H4 | 45.02 |
项目 | 合成气 | |||
---|---|---|---|---|
工业数据 | 模拟结果 | 工业数据 | 模拟结果 | |
温度/°C | -173.6 | -179.4 | -91.5 | -119.4 |
压力/MPa | 3.1 | 1.1 | 3.1 | 1.2 |
摩尔流量/kmol·h-1 | 4077 | 4077 | 496 | 496 |
质量流量/kg·h-1 | 40.9 | 41.0 | 8.4 | 8.4 |
摩尔分数/% | ||||
H2 | 69.75 | 69.06 | 0.00 | 0.00 |
CO | 30.57 | 30.53 | 0.21 | 0.00 |
CH4 | 0.01 | 0.15 | 93.20 | 93.31 |
C2H6 | 0.00 | 0.00 | 6.54 | 6.55 |
AR+N2 | 0.21 | 0.24 | 0.05 | 0.14 |
项目 | 合成气 | |||
---|---|---|---|---|
工业数据 | 模拟结果 | 工业数据 | 模拟结果 | |
温度/°C | -173.6 | -179.4 | -91.5 | -119.4 |
压力/MPa | 3.1 | 1.1 | 3.1 | 1.2 |
摩尔流量/kmol·h-1 | 4077 | 4077 | 496 | 496 |
质量流量/kg·h-1 | 40.9 | 41.0 | 8.4 | 8.4 |
摩尔分数/% | ||||
H2 | 69.75 | 69.06 | 0.00 | 0.00 |
CO | 30.57 | 30.53 | 0.21 | 0.00 |
CH4 | 0.01 | 0.15 | 93.20 | 93.31 |
C2H6 | 0.00 | 0.00 | 6.54 | 6.55 |
AR+N2 | 0.21 | 0.24 | 0.05 | 0.14 |
项目 | 取值范围 | 工艺 | 压缩 级数 | 压缩出口压力/MPa | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2-1 | 2-2 | 2-3 | 2-4 | 3-1 | 3-2 | 3-3 | 3-4 | ||||
R134A进口压力/MPa | 2.0~3.7 | NRC | 一级 | 1.1~1.4 | 1.1~1.4 | 1.1~1.4 | 1.1~1.4 | 0.6~0.8 | 0.6~0.8 | 0.6~0.8 | 0.6~0.8 |
溴化锂进口质量分数/% | 0.4~0.6 | 二级 | 2.4~3.0 | 2.4~3.0 | 2.4~3.0 | 2.4~3.0 | 1.2~1.6 | 1.2~1.6 | 1.2~1.6 | 1.2~1.6 | |
溴化锂流量/t·h-1 | 90~180 | 三级 | 2.0~3.0 | 2.0~3.0 | 2.0~3.0 | 2.0~3.0 | |||||
溴化锂进口压力/kPa | 40~80 | MRC | 一级 | 2.0~4.8 | 0.5~0.7 | 0.3~0.4 | 0.2~0.3 | 2.0~4.8 | 0.5~0.7 | 0.3~0.4 | 0.2~0.3 |
混合制冷剂流量/kmol·h-1 | 2000~7000 | 二级 | 2.5~4.8 | 0.9~1.6 | 0.5~0.7 | 2.5~4.8 | 0.9~1.6 | 0.5~0.7 | |||
氮气流量/kmol·h-1 | 2000~4000 | 三级 | 2.7~4.8 | 1.0~1.8 | 2.7~4.8 | 1.0~1.8 | |||||
四级 | 2.0~4.8 | 2.0~4.8 |
项目 | 取值范围 | 工艺 | 压缩 级数 | 压缩出口压力/MPa | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2-1 | 2-2 | 2-3 | 2-4 | 3-1 | 3-2 | 3-3 | 3-4 | ||||
R134A进口压力/MPa | 2.0~3.7 | NRC | 一级 | 1.1~1.4 | 1.1~1.4 | 1.1~1.4 | 1.1~1.4 | 0.6~0.8 | 0.6~0.8 | 0.6~0.8 | 0.6~0.8 |
溴化锂进口质量分数/% | 0.4~0.6 | 二级 | 2.4~3.0 | 2.4~3.0 | 2.4~3.0 | 2.4~3.0 | 1.2~1.6 | 1.2~1.6 | 1.2~1.6 | 1.2~1.6 | |
溴化锂流量/t·h-1 | 90~180 | 三级 | 2.0~3.0 | 2.0~3.0 | 2.0~3.0 | 2.0~3.0 | |||||
溴化锂进口压力/kPa | 40~80 | MRC | 一级 | 2.0~4.8 | 0.5~0.7 | 0.3~0.4 | 0.2~0.3 | 2.0~4.8 | 0.5~0.7 | 0.3~0.4 | 0.2~0.3 |
混合制冷剂流量/kmol·h-1 | 2000~7000 | 二级 | 2.5~4.8 | 0.9~1.6 | 0.5~0.7 | 2.5~4.8 | 0.9~1.6 | 0.5~0.7 | |||
氮气流量/kmol·h-1 | 2000~4000 | 三级 | 2.7~4.8 | 1.0~1.8 | 2.7~4.8 | 1.0~1.8 | |||||
四级 | 2.0~4.8 | 2.0~4.8 |
项目 | 单价 |
---|---|
混合制冷剂/CNY·10-3m-3 | 12.5 |
氮气/CNY·10-3m-3 | 0.45 |
溴化锂/ | 2.4 |
R134A/ | 2.3 |
冷却水/CNY·t-1 | 0.24 |
电/CNY·(kW·h)-1 | 0.5 |
项目 | 单价 |
---|---|
混合制冷剂/CNY·10-3m-3 | 12.5 |
氮气/CNY·10-3m-3 | 0.45 |
溴化锂/ | 2.4 |
R134A/ | 2.3 |
冷却水/CNY·t-1 | 0.24 |
电/CNY·(kW·h)-1 | 0.5 |
项目 | 2-1 | 2-2 | 2-3 | 2-4 | 3-1 | 3-2 | 3-3 | 3-4 |
---|---|---|---|---|---|---|---|---|
R134A进口压力/MPa | 2.4 | 3.4 | 3.3 | 3.1 | 2.7 | 3.1 | 2.5 | |
溴化锂进口质量分数 /% | 55.7 | 46.2 | 43.1 | 57.9 | 42.7 | 47.0 | 42.1 | |
溴化锂流量/t·h-1 | 96.7 | 99.0 | 117.8 | 88.0 | 111.5 | 96.0 | 126.4 | |
溴化锂进口压力/kPa | 40.14 | 49.36 | 51.36 | 40.16 | 56.87 | 66.04 | 57.71 | |
混合制冷剂流量 /kmol·h-1 | 3103 | 2911 | 2313 | 2452 | 3209 | 3184 | 2682 | 3973 |
氮气流量/kmol·h-1 | 2378 | 2551 | 2261 | 2359 | 2482 | 2220 | 2293 | 1918 |
MRC出口压力/MPa | ||||||||
一级 | 3.5 | 0.66 | 0.35 | 0.26 | 3.1 | 0.63 | 0.39 | 0.24 |
二级 | 3.1 | 1.2 | 0.69 | 3.3 | 0.97 | 0.53 | ||
三级 | 4.2 | 2.5 | 3.5 | 1.2 | ||||
四级 | 4.4 | 3.9 | ||||||
N2压力/MPa | ||||||||
一级 | 1.1 | 1.4 | 1.3 | 1.1 | 0.75 | 0.74 | 0.62 | 0.73 |
二级 | 2.6 | 2.7 | 2.5 | 2.5 | 1.3 | 1.3 | 1.3 | 1.6 |
三级 | 2.5 | 2.5 | 2.3 | 2.8 |
项目 | 2-1 | 2-2 | 2-3 | 2-4 | 3-1 | 3-2 | 3-3 | 3-4 |
---|---|---|---|---|---|---|---|---|
R134A进口压力/MPa | 2.4 | 3.4 | 3.3 | 3.1 | 2.7 | 3.1 | 2.5 | |
溴化锂进口质量分数 /% | 55.7 | 46.2 | 43.1 | 57.9 | 42.7 | 47.0 | 42.1 | |
溴化锂流量/t·h-1 | 96.7 | 99.0 | 117.8 | 88.0 | 111.5 | 96.0 | 126.4 | |
溴化锂进口压力/kPa | 40.14 | 49.36 | 51.36 | 40.16 | 56.87 | 66.04 | 57.71 | |
混合制冷剂流量 /kmol·h-1 | 3103 | 2911 | 2313 | 2452 | 3209 | 3184 | 2682 | 3973 |
氮气流量/kmol·h-1 | 2378 | 2551 | 2261 | 2359 | 2482 | 2220 | 2293 | 1918 |
MRC出口压力/MPa | ||||||||
一级 | 3.5 | 0.66 | 0.35 | 0.26 | 3.1 | 0.63 | 0.39 | 0.24 |
二级 | 3.1 | 1.2 | 0.69 | 3.3 | 0.97 | 0.53 | ||
三级 | 4.2 | 2.5 | 3.5 | 1.2 | ||||
四级 | 4.4 | 3.9 | ||||||
N2压力/MPa | ||||||||
一级 | 1.1 | 1.4 | 1.3 | 1.1 | 0.75 | 0.74 | 0.62 | 0.73 |
二级 | 2.6 | 2.7 | 2.5 | 2.5 | 1.3 | 1.3 | 1.3 | 1.6 |
三级 | 2.5 | 2.5 | 2.3 | 2.8 |
参数 | 原流程 | 最优流程 |
---|---|---|
Wcomp | 23.3 | 16.8 |
Wpump | 0 | 0.068 |
Wexp | 1.4 | 2.5 |
Wnet | 22.0 | 14.4 |
参数 | 原流程 | 最优流程 |
---|---|---|
Wcomp | 23.3 | 16.8 |
Wpump | 0 | 0.068 |
Wexp | 1.4 | 2.5 |
Wnet | 22.0 | 14.4 |
参数 | 原流程 | 最优流程 |
---|---|---|
mLNG/kg·h-1 | 8429 | 8429 |
hsyngas/kJ·kg-1 | -3940 | -3940 |
hLNG/kJ·kg-1 | -5184 | -5184 |
Wnet/MW | 22.0 | 14.4 |
SEC/kW·kg-1 | 2.60 | 1.71 |
COP | 0.13 | 0.20 |
参数 | 原流程 | 最优流程 |
---|---|---|
mLNG/kg·h-1 | 8429 | 8429 |
hsyngas/kJ·kg-1 | -3940 | -3940 |
hLNG/kJ·kg-1 | -5184 | -5184 |
Wnet/MW | 22.0 | 14.4 |
SEC/kW·kg-1 | 2.60 | 1.71 |
COP | 0.13 | 0.20 |
设备 | 投资金额 |
---|---|
换热器/万元 | 1401 |
泵/万元 | 17 |
膨胀机/万元 | 1132 |
压缩机/万元 | 190 |
总计/万元 | 2550 |
设备 | 投资金额 |
---|---|
换热器/万元 | 1401 |
泵/万元 | 17 |
膨胀机/万元 | 1132 |
压缩机/万元 | 190 |
总计/万元 | 2550 |
原料 | 原流程 | 最优流程 |
---|---|---|
混合制冷剂 | 0.105 | 0.065 |
氮气 | 0.002 | 0.002 |
溴化锂 | 283 | |
R134A | 584 | |
电 | 9191 | 5749 |
冷却水 | 303 | 576 |
原料成本 | 0.107 | 866 |
操作成本 | 9494 | 6325 |
原料 | 原流程 | 最优流程 |
---|---|---|
混合制冷剂 | 0.105 | 0.065 |
氮气 | 0.002 | 0.002 |
溴化锂 | 283 | |
R134A | 584 | |
电 | 9191 | 5749 |
冷却水 | 303 | 576 |
原料成本 | 0.107 | 866 |
操作成本 | 9494 | 6325 |
1 | 杨宇, 何则. 中国海外油气依存的现状、地缘风险与应对策略[J]. 资源科学, 2020, 42(8): 1614-1629. |
YANG Yu, HE Ze. China's overseas oil and gas dependence: situation, geographical risks, and countermeasures[J]. Resources Science, 2020, 42(8): 1614-1629. | |
2 | 周明灿, 刘伟, 王照成. 煤化工发展历程及现代煤化工展望[J]. 煤化工, 2018, 46(3): 1-6, 16. |
ZHOU Mingcan, LIU Wei, WANG Zhaocheng. Development progress of coal chemical industry and prospect of modern coal chemical industry[J]. Coal Chemical Industry, 2018, 46(3): 1-6, 16. | |
3 | YAO Yuan, CHANG Yuan, HUANG Runze, et al. Environmental implications of the methanol economy in China: well-to-wheel comparison of energy and environmental emissions for different methanol fuel production pathways[J]. Journal of Cleaner Production, 2018, 172: 1381-1390. |
4 | GU Jingfang, YANG Siyu, KOKOSSIS A. Modeling and analysis of coal-based Lurgi gasification for LNG and methanol coproduction process[J]. Processes, 2019, 7(10): 688. |
5 | 曹红忠. 甲烷液化深冷分离生产工艺的比较分析[J]. 中国石油和化工标准与质量, 2020, 40(16): 255-256. |
CAO Hongzhong. Comparison and analysis of liquefaction production technology of cryogenic separation of methane[J]. China Petroleum and Chemical Standard and Quality, 2020, 40(16): 255-256. | |
6 | CATRINI P, CIPOLLINA A, MICALE G, et al. Potential applications of salinity gradient power-heat engines for recovering low-temperature waste heat in cogeneration plants[J]. Energy Conversion and Management, 2021, 237: 114135. |
7 | EBRAHIMI A, GHORBANI B, TAGHAVI M. Pinch and exergy evaluation of a liquid nitrogen cryogenic energy storage structure using air separation unit, liquefaction hybrid process, and Kalina power cycle[J]. Journal of Cleaner Production, 2021, 305: 127226. |
8 | GHORBANI B, AMIDPOUR M. Energy, exergy, and sensitivity analyses of a new integrated system for generation of liquid methanol, liquefied natural gas, and crude helium using organic Rankine cycle, and solar collectors[J]. Journal of Thermal Analysis and Calorimetry, 2021, 145(3): 1485-1508. |
9 | MEHRPOOYA M, MOFTAKHARI SHARIFZADEH M M, ROSEN M A. Energy and exergy analyses of a novel power cycle using the cold of LNG (liquefied natural gas) and low-temperature solar energy[J]. Energy, 2016, 95: 324-345. |
10 | ZHANG Jinrui, MEERMAN H, BENDERS R, et al. Technical and economic optimization of expander-based small-scale natural gas liquefaction processes with absorption precooling cycle[J]. Energy, 2020, 191: 116592. |
11 | PENG Xiaodong, SHE Xiaohui, LI Yongliang, et al. Thermodynamic analysis of liquid air energy storage integrated with a serial system of organic Rankine and absorption refrigeration cycles driven by compression heat[J]. Energy Procedia, 2017, 142: 3440-3446. |
12 | YU Haoshui, EASON J, BIEGLER L T, et al. Process optimization and working fluid mixture design for organic Rankine cycles (ORCs) recovering compression heat in oxy-combustion power plants[J]. Energy Conversion and Management, 2018, 175: 132-141. |
13 | ZHANG Hongsheng, LIU Xingang, LIU Yifeng, et al. Energy and exergy analyses of a novel cogeneration system coupled with absorption heat pump and organic Rankine cycle based on a direct air cooling coal-fired power plant[J]. Energy, 2021, 229: 120641. |
14 | YANG Sheng, YANG Siyu, WANG Yifan, et al. Low grade waste heat recovery with a novel cascade absorption heat transformer[J]. Energy, 2017, 130: 461-472. |
15 | 潘奇峰. 甲烷深冷分离工艺在煤化工中的应用[J]. 深冷技术, 2013(3): 37-41. |
PAN Qifeng. Application of methane deep-refrigerating separation process in coal chemical[J]. Cryogenic Technology, 2013(3): 37-41. | |
16 | 肖荣鸽, 高旭, 靳文博, 等. 双循环混合制冷剂天然气液化流程的优化模拟[J]. 化学工程, 2019, 47(3): 62-67, 73. |
XIAO Rongge, GAO Xu, JIN Wenbo, et al. Optimization simulation of natural gas liquefaction process with double mixed refrigerant cycle[J]. Chemical Engineering (China), 2019, 47(3): 62-67, 73. | |
17 | 徐孟进, 曾科满, 梁家伟, 等. 基于Aspen Plus的低温余热溴化锂吸收式制冷系统性能的影响因素分析[J]. 资源信息与工程, 2020, 35(6): 123-126. |
XU Mengjin, ZENG Keman, LIANG Jiawei, et al. Performance analysis of a lithium bromide absorption refrigeration system driven by low-grade waste heat based on Aspen Plus[J]. Resource Information and Engineering, 2020, 35(6): 123-126. | |
18 | SU Liwang, LI Xiangrong, SUN Zuoyu. The consumption, production and transportation of methanol in China: a review[J]. Energy Policy, 2013, 63: 130-138. |
19 | 袁智威, 杨中宇, 史向彤. 针对不同工业余热温度的有机朗肯循环工质优选[J]. 热能动力工程, 2019, 34(1): 68-73. |
YUAN Zhiwei, YANG Zhongyu, SHI Xiangtong. The optimal selection of working fluid based on organic Rankine cycle for different industrial waste heat temperature[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(1): 68-73. | |
20 | 朱明磊, 李长松. 溴化锂吸收式热泵结晶原因处理及预防[J]. 化工设计通讯, 2020, 46(12): 79-80. |
ZHU Minglei, LI Changsong. Treatment and prevention of crystallization of lithium bromide absorption heat pump[J]. Chemical Engineering Design Communications, 2020, 46(12): 79-80. | |
21 | 赖秀文, 张淑文, 胡明辉, 等. 煤制甲醇中的合成气深冷分离制LNG的工艺研发[J]. 石油与天然气化工, 2015, 44(1): 54-58. |
LAI Xiuwen, ZHANG Shuwen, HU Minghui, et al. Technical research and development of cryogenically separating LNG from syngas in coal-to-methanol[J]. Chemical Engineering of Oil & Gas, 2015, 44(1): 54-58. | |
22 | 孙崇国. 自适应遗传算法在变风量空调系统解耦控制中的应用研究[D]. 青岛: 青岛理工大学, 2020. |
SUN Chongguo. Application of adaptive genetic algorithm in decoupling control of variable air volume air-conditioning system[D]. Qingdao: Qingdao Technology University, 2020. | |
23 | HE T B, JU Y L. Performance improvement of nitrogen expansion liquefaction process for small-scale LNG plant[J]. Cryogenics, 2014, 61: 111-119. |
24 | SANAYE S, SHAMS GHOREISHI S M. Energy, exergy and economic analyses of two modified and optimized small-scale natural gas liquefaction (LNG) cycles using N2 and N2/CH4 refrigerants with CO2 precooling[J]. Cryogenics, 2019, 102: 66-76. |
25 | GHORBANI B, HAMEDI M H, AMIDPOUR M, et al. Implementing absorption refrigeration cycle in lieu of DMR and C3MR cycles in the integrated NGL, LNG and NRU unit[J]. International Journal of Refrigeration, 2017, 77: 20-38. |
26 | 赵靓, 雷宇, 杜德飞, 等. 气田燃气式增压机烟气余热发电初探[J]. 天然气工业, 2019, 39(4): 96-103. |
ZHAO Liang, LEI Yu, DU Defei, et al. A preliminary discussion on the reutilization of flue gas waste heat from gas field boosters for power generation[J]. Natural Gas Industry, 2019, 39(4): 96-103. | |
27 | YIN Liang, JU Yonglin. Conceptual design and analysis of a novel process for BOG re-liquefaction combined with absorption refrigeration cycle[J]. Energy, 2020, 205: 118008. |
28 | 张建雪, 张慧玲, 马婧. 云计算数据中心空调制冷系统浅析[J]. 信息通信, 2018, 31(8): 128-130. |
ZHANG Jianxue, ZHANG Huiling, MA Jing. Analysis of air conditioning and Refrigeration system in cloud computing data center[J]. Information & Communications, 2018, 31(8): 128-130. | |
29 | 赵姝婧. 低压特殊原料气低温甲醇洗工艺模拟[D]. 大连: 大连理工大学, 2017. |
ZHAO Shujing. The design of rectisol process for special feed gas under low-pressure[D]. Dalian: Dalian University of Technology, 2017. | |
30 | 苗立冬, 李昆, 赵志成. 硫回收装置尾气处理技术在煤化工装置中的改进与应用[J]. 氮肥与合成气, 2021, 49(4): 9-12, 20. |
MIAO Lidong, LI Kun, ZHAO Zhicheng. [J]. Nitrogenous Fertilizer & Syngas, 2021, 49(4): 9-12, 20. | |
31 | 罗海亮, 李印, 王学军. 数据中心冷却系统的温度与温差浅析[J]. 制冷与空调, 2021, 21(5): 83-88, 94. |
LUO Hailiang, LI Yin, WANG Xuejun. Analysis on temperature and temperature difference of data center cooling system[J]. Refrigeration and Air-Conditioning, 2021, 21(5): 83-88, 94. |
[1] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[2] | LIN Hai, WANG Yufei. Distributed wind farm layout optimization considering noise constraint [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3394-3403. |
[3] | LI Lanyu, HUANG Xinye, WANG Xiaonan, QIU Tong. Reflection and prospects on the intelligent transformation of chemical engineering research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3325-3330. |
[4] | QIAO Xu, ZHANG Zhuxiu. Consideration and exploration of the development path for inherent safety of chemical engineering [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3319-3324. |
[5] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[6] | LING Shan, LIU Juming, ZHANG Qiancheng, LI Yan. Research progress on simulated moving bed separation process and its optimization methods [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2233-2244. |
[7] | ZENG Siying, YANG Minbo, FENG Xiao. Machine learning-based prediction of coalbed methane composition and real-time optimization of liquefaction process [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5059-5066. |
[8] | ZHAO Lujun, QI Yuqi, SHAO Jiaming, CHU Jian, WANG Zhihua, FENG Yiping. Model and practice of the intelligent manufacturing readiness for process industry [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 118-127. |
[9] | LI Wei, RUAN Chenglong, WANG Xiaoming, LI Yajie, LIANG Chenglong. Integrated modelling method for tank-batch finished gasoline blending formulations [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4701-4712. |
[10] | SUN Deyun, HU Yanhong, LIU Peng, TANG Mao, HU Ze, LIU Zhaogang, WU Jinxiu. Interaction mechanism of CTAB and Ce3+ in different cerium salt systems (nitrate, sulfate, chloride) [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3212-3220. |
[11] | DAI Min, YANG Fusheng, ZHANG Zaoxiao, LIU Guilian, FENG Xiao. 3E Multi-objective optimization of hexane oil distillation process based on multi-strategy ensemble optimization algorithm [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2852-2863. |
[12] | ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of refining and chemical integration under China’s dual-carbon target [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2226-2230. |
[13] | CHEN Lei, YAN Xingqing, HU Yanwei, YU Shuai, YANG Kai, CHEN Shaoyun, GUAN Hui, YU Jianliang, MAHGEREFTEH Haroun, MARTYNOV Sergey. Research progress on fracture control of accidental leakage and decompression in CO2 pipeline transportation [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1241-1255. |
[14] | CHU Genyun, FAN Yingjie, ZHANG Dawei, GAO Minglin, MEI Shumei, YANG Qingchun. Progress in key unit technologies and low-carbon integrated processes of coal to ethylene glycol process [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1654-1666. |
[15] | ZHU Tao, HAN Yiwei, LIU Shuai, XIE Wei, YUAN Bo, SONG Huiping, CHEGN Fangqin. Progress in electrocatalysis by single-atom site catalysts [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 666-681. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |