Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (10): 5228-5235.DOI: 10.16085/j.issn.1000-6613.2021-2607
• Chemical processes and equipment • Previous Articles Next Articles
XU Guangming1,2(), SHAO Bo1,2, LI Nanxi2, ZHAO Chenyang1,2, ZHENG Suzheng1,2, LU Yan1,2()
Received:
2021-12-23
Revised:
2022-03-15
Online:
2022-10-21
Published:
2022-10-20
Contact:
LU Yan
徐光明1,2(), 邵博1,2, 李南茜2, 赵晨阳1,2, 郑宿正1,2, 陆燕1,2()
通讯作者:
陆燕
作者简介:
徐光明(1995—),男,博士研究生,研究方向为两相流体回路和环路热管技术。E-mail:xuguangming@mail.sitp.ac.cn。
基金资助:
CLC Number:
XU Guangming, SHAO Bo, LI Nanxi, ZHAO Chenyang, ZHENG Suzheng, LU Yan. Design and thermal characteristics analysis of a high-performance flexible loop heat pipe[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5228-5235.
徐光明, 邵博, 李南茜, 赵晨阳, 郑宿正, 陆燕. 高性能柔性环路热管设计与热特性分析[J]. 化工进展, 2022, 41(10): 5228-5235.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-2607
基本部件 | LHP参数 |
---|---|
蒸发器 | 铝,内/外径:35mm/41mm;长度:295mm |
毛细芯 | PTFE,长度:241mm;孔径:20μm;孔隙率:32.37% |
储液器 | 铝,容积:1328.2mL |
蒸汽管线(内径/外径/长度) | 铝,6mm/10mm/4980mm+4mm/6mm/750mm(软管) |
液体管线(内径/外径/长度) | 铝,6mm/10mm/3220mm+4mm/6mm/750mm(软管) |
冷凝管线(内径/外径/长度) | 无氧铜:8mm/10mm/2200mm |
工质及其充装量 | 氨:1017g |
基本部件 | LHP参数 |
---|---|
蒸发器 | 铝,内/外径:35mm/41mm;长度:295mm |
毛细芯 | PTFE,长度:241mm;孔径:20μm;孔隙率:32.37% |
储液器 | 铝,容积:1328.2mL |
蒸汽管线(内径/外径/长度) | 铝,6mm/10mm/4980mm+4mm/6mm/750mm(软管) |
液体管线(内径/外径/长度) | 铝,6mm/10mm/3220mm+4mm/6mm/750mm(软管) |
冷凝管线(内径/外径/长度) | 无氧铜:8mm/10mm/2200mm |
工质及其充装量 | 氨:1017g |
热沉温度/℃ | 加热功率/W |
---|---|
20 | 50/100/200/300/400/500/600/700/800 |
热沉温度/℃ | 加热功率/W |
---|---|
20 | 50/100/200/300/400/500/600/700/800 |
工质 | 毛细芯材料、孔径 | 最大传热量/W | 工作温度/℃ | 系统最小热阻/W·℃-1 | 气、液管线长度/m | 热沉温度/℃ | 作者及参考文献 |
---|---|---|---|---|---|---|---|
氨 | 镍、<5μm | 600 | >37.5 | 0.059 | 2.60、2.35 | 5 | Jasvanth[ |
氨 | 镍、4.1μm/7.8μm | 400 | 45 | 0.064 | 0.49、0.52 | 20 | Maydanik[ |
水 | SUS、1.2μm/PTFE、1.0μm | 700/650 | 180 | 0.073 | 1.01、1.06 | 80 | Watanabe[ |
氨 | 氮化硅陶瓷、0.5μm | 400 | >37.5 | 0.018 | 1.50、0.50 | 20 | 杨涛[ |
丙酮 | 不锈钢丝网、约35μm | 140 | 90 | 0.032 | 0.41、0.80 | (12±1) | Xiao[ |
氨 | PTFE、20μm | 700 | <34.1 | 0.010 | 5.73、3.97 | 20 | 本实验 |
工质 | 毛细芯材料、孔径 | 最大传热量/W | 工作温度/℃ | 系统最小热阻/W·℃-1 | 气、液管线长度/m | 热沉温度/℃ | 作者及参考文献 |
---|---|---|---|---|---|---|---|
氨 | 镍、<5μm | 600 | >37.5 | 0.059 | 2.60、2.35 | 5 | Jasvanth[ |
氨 | 镍、4.1μm/7.8μm | 400 | 45 | 0.064 | 0.49、0.52 | 20 | Maydanik[ |
水 | SUS、1.2μm/PTFE、1.0μm | 700/650 | 180 | 0.073 | 1.01、1.06 | 80 | Watanabe[ |
氨 | 氮化硅陶瓷、0.5μm | 400 | >37.5 | 0.018 | 1.50、0.50 | 20 | 杨涛[ |
丙酮 | 不锈钢丝网、约35μm | 140 | 90 | 0.032 | 0.41、0.80 | (12±1) | Xiao[ |
氨 | PTFE、20μm | 700 | <34.1 | 0.010 | 5.73、3.97 | 20 | 本实验 |
加热功率 /W | 压降/Pa | ||||||||
---|---|---|---|---|---|---|---|---|---|
气线无软管 | 气线软管 | 冷凝器 | 液线无软管 | 液线软管 | 毛细芯 | 局部阻力 | 蒸汽槽道 | 剩余压降 | |
50 | 8.09 | 6.17 | 1.69 | 0.94 | 1.11 | 26.18 | 0.45 | 1.04 | 4802.33 |
100 | 16.18 | 23.26 | 6.20 | 1.88 | 2.22 | 52.36 | 1.80 | 4.68 | 4739.42 |
200 | 75.72 | 78.25 | 24.96 | 3.76 | 4.43 | 104.73 | 7.21 | 15.74 | 4533.19 |
300 | 153.96 | 159.10 | 58.18 | 5.64 | 6.65 | 157.09 | 16.23 | 32.00 | 4259.16 |
400 | 254.71 | 263.21 | 108.10 | 7.52 | 8.87 | 209.45 | 28.85 | 52.93 | 3914.35 |
500 | 376.38 | 388.95 | 175.71 | 9.40 | 11.09 | 261.82 | 45.08 | 78.22 | 3501.35 |
600 | 517.84 | 535.14 | 263.02 | 11.28 | 13.30 | 314.18 | 64.91 | 107.62 | 3020.71 |
700 | 678.20 | 700.84 | 372.25 | 13.16 | 15.52 | 366.54 | 88.36 | 140.95 | 2472.18 |
加热功率 /W | 压降/Pa | ||||||||
---|---|---|---|---|---|---|---|---|---|
气线无软管 | 气线软管 | 冷凝器 | 液线无软管 | 液线软管 | 毛细芯 | 局部阻力 | 蒸汽槽道 | 剩余压降 | |
50 | 8.09 | 6.17 | 1.69 | 0.94 | 1.11 | 26.18 | 0.45 | 1.04 | 4802.33 |
100 | 16.18 | 23.26 | 6.20 | 1.88 | 2.22 | 52.36 | 1.80 | 4.68 | 4739.42 |
200 | 75.72 | 78.25 | 24.96 | 3.76 | 4.43 | 104.73 | 7.21 | 15.74 | 4533.19 |
300 | 153.96 | 159.10 | 58.18 | 5.64 | 6.65 | 157.09 | 16.23 | 32.00 | 4259.16 |
400 | 254.71 | 263.21 | 108.10 | 7.52 | 8.87 | 209.45 | 28.85 | 52.93 | 3914.35 |
500 | 376.38 | 388.95 | 175.71 | 9.40 | 11.09 | 261.82 | 45.08 | 78.22 | 3501.35 |
600 | 517.84 | 535.14 | 263.02 | 11.28 | 13.30 | 314.18 | 64.91 | 107.62 | 3020.71 |
700 | 678.20 | 700.84 | 372.25 | 13.16 | 15.52 | 366.54 | 88.36 | 140.95 | 2472.18 |
1 | KU Jentung. Operating characteristics of loop heat pipes[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale, PA: SAE International, 1999: 503-519. |
2 | MAYDANIK Yu F. Loop heat pipes[J]. Applied Thermal Engineering, 2005, 25(5/6): 635-657. |
3 | GUO Yuandong, ZHOU Qiang, LIU Xintong, et al. Co-designing cryogenic system with pulse tube cryocooler and loop heat pipe for infrared energy management[J]. Applied Thermal Engineering, 2021, 195: 117228. |
4 | CHO Hyokjin, JIN Lingxue, JEONG Sangkwon. Experimental investigation on performances and characteristics of nitrogen-charged cryogenic loop heat pipe with wick-mounted condenser[J]. Cryogenics, 2020, 105: 102970. |
5 | SHIOGA Takeshi, MIZUNO Yoshihiro, NAGANO Hosei. Operating characteristics of a new ultra-thin loop heat pipe[J]. International Journal of Heat and Mass Transfer, 2020, 151: 119436. |
6 | SINGH Randeep, NGUYEN Tien. Loop heat pipes for thermal management of electric vehicles[J]. Journal of Thermal Science and Engineering Applications, 2022, 14(6): 061010. |
7 | WATANABE Noriyuki, MIZUTANI Takuji, NAGANO Hosei. High-performance energy-saving miniature loop heat pipe for cooling compact power semiconductors[J]. Energy Conversion and Management, 2021, 236: 114081. |
8 | XIONG Kangning, MENG Like, WANG Shuangfeng. Design, fabrication, investigation and analysis of a novel flat evaporator loop heat pipe for cooling high heat flux server chips[J]. Applied Thermal Engineering, 2022, 201: 117775. |
9 | 鲁得浦, 谢荣建, 文佳佳, 等. 多蒸发器低温回路热管的启动特性[J]. 科学通报, 2020, 65(12): 1141-1150. |
LU Depu, XIE Rongjian, WEN Jiajia, et al. Startup characteristics of a multi-evaporator cryogenic loop heat pipe[J]. Chinese Science Bulletin, 2020, 65(12): 1141-1150. | |
10 | BERNAGOZZI Marco, GEORGOULAS Anastasios, Nicolas MICHÉ, et al. Novel battery thermal management system for electric vehicles with a loop heat pipe and graphite sheet inserts[J]. Applied Thermal Engineering, 2021, 194: 117061. |
11 | GERNERT Nelson J, BROWN Jeffrey. Development of a flexible loop heat pipe cold plate[C]//SAE Technical Paper Series. 400 Commonwealth Drive. Warrendale, PA: SAE International, 1995: 951436. |
12 | BUGBY D. Across-gimbal and miniaturized cryogenic loop heat pipes[C]//AIP Conference Proceedings. Albuquerque, New Mexico: AIP, 2003: 218-226. |
13 | 李楠, 郭元东, 许程, 等. 液氮温区二维指向深冷环路热管设计与实验研究 [J/OL]. 北京航空航天大学学报, . |
LI Nan, GUO Yuandong, XU Cheng, et al. Design and experimental research of nitrogen two-dimensional spatial cryogenic loop heat pipe[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, . | |
14 | ZHOU Wei, LING Weisong, DUAN Lian, et al. Development and tests of loop heat pipe with multi-layer metal foams as wick structure[J]. Applied Thermal Engineering, 2016, 94: 324-330. |
15 | MAYDANIK Y F, VERSHININ S V, CHERNYSHEVA M A. Investigation of thermal characteristics of a loop heat pipe in a wide range of external conditions[J]. International Journal of Heat and Mass Transfer, 2020, 147: 118967. |
16 | WANG Huanfa, LIN Guiping, SHEN Xiaobin, et al. Effect of evaporator/condenser elevations on a loop heat pipe with non-condensable gas[J]. Applied Thermal Engineering, 2020, 180: 115711. |
17 | 刘超, 谢荣建, 李南茜, 等. 不同加热方式下环路热管蒸发器补偿器的可视化[J]. 化工进展, 2021, 40(5): 2401-2415. |
LIU Chao, XIE Rongjian, LI Nanxi, et al. Visualization of compensator and evaporator of a loop heat pipe under different heating methods[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2401-2415. | |
18 | LIU Cheng, XIE Rongjian, LI Nanxi, et al. Experimental study of loop heat pipes with different working fluids in 190~260K[J]. Applied Thermal Engineering, 2020, 178: 115530. |
19 | WANG Huanfa, LIN Guiping, BAI Lizhan, et al. Comparative study of two loop heat pipes using R134a as the working fluid[J]. Applied Thermal Engineering, 2020, 164: 114459. |
20 | XU Guangming, XIE Rongjian, LI Nanxi, et al. Experimental investigation of a loop heat pipe with R245fa and R1234ze(E) as working fluids[J]. Journal of Thermal Science and Engineering Applications, 2022, 14(4): 041014. |
21 | JASVANTH V S, ADONI Abhijit A, JAIKUMAR V, et al. Design and testing of an ammonia loop heat pipe[J]. Applied Thermal Engineering, 2017, 111: 1655-1663. |
22 | MAYDANIK Y F, VERSHININ S V, CHERNYSHEVA M A. The results of comparative analysis and tests of ammonia loop heat pipes with cylindrical and flat evaporators[J]. Applied Thermal Engineering, 2018, 144: 479-487. |
23 | WATANABE Noriyuki, PHAN Nguyen, SAITO Yuki, et al. Operating characteristics of an anti-gravity loop heat pipe with a flat evaporator that has the capability of a loop thermosyphon[J]. Energy Conversion and Management, 2020, 205: 112431. |
24 | 杨涛, 张明佳, 赵石磊, 等. 陶瓷芯平板式毛细泵设计及试验[J]. 中国科学: 技术科学, 2021, 51(5): 554-564. |
YANG Tao, ZHANG Mingjia, ZHAO Shilei, et al. Design and test of a flat capillary pump with ceramic wick[J]. Scientia Sinica (Technologica), 2021, 51(5): 554-564. | |
25 | ZHANG Zikang, ZHANG Hao, MA Zhenyuan, et al. Experimental study of heat transfer capacity for loop heat pipe with flat disk evaporator[J]. Applied Thermal Engineering, 2020, 173: 115183. |
26 | XIAO Biao, DENG Weizhong, MA Zhengyuan, et al. Experimental investigation of loop heat pipe with a large squared evaporator for multi-heat sources cooling[J]. Renewable Energy, 2020, 147: 239-248. |
27 | ADACHI Takuya, FUJITA Koji, NAGAI Hiroki. Numerical study of temperature oscillation in loop heat pipe[J]. Applied Thermal Engineering, 2019, 163: 114281. |
28 | YAN Kaifen, XIE Rongjian, LI Nanxi, et al. Experimental investigation and visualization study of the condensation characteristics in a propylene loop heat pipe[J]. Journal of Thermal Science, 2021, 30(5): 1803-1813. |
29 | FRIEDEL L. Improved friction pressure drop correlation for horizontal and vertical two-phase pipe flow[C]//Ispra: European Two-phase Flow Group Meeting, 1979, 18(7): 485-491. |
30 | 刘成, 谢荣建, 吴亦农. 工质对180~230K低温环路热管工作特性的影响[J]. 工程科学与技术, 2020, 52(6): 190-198. |
LIU Cheng, XIE Rongjian, WU Yinong. Effects of working fluids on operating characteristics of the cryogenic loop heat pipe in 180—230K[J]. Advanced Engineering Sciences, 2020, 52(6): 190-198. | |
31 | 刘超. 不同条件下环路热管蒸发器补偿器传热传质特性实验研究[D]. 北京: 中国科学院大学(中国科学院上海技术物理研究所), 2021. |
LIU Chao. Experimental investigation on the heat and mass transfer characteristics in the evaporator-compensation chamber of loop heat pipes under different conditions[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2021. |
[1] | XU Ruosi, TAN Wei. Flow field simulation and fluid-structure coupling analysis of C-tube pool boiling two-phase flow model [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 47-55. |
[2] | XIAO Hui, ZHANG Xianjun, LAN Zhike, WANG Suhao, WANG Sheng. Advances in flow and heat transfer research of liquid metal flowing across tube bundles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 10-20. |
[3] | ZHAO Chen, MIAO Tianze, ZHANG Chaoyang, HONG Fangjun, WANG Dahai. Heat transfer characteristics of ethylene glycol aqueous solution in slit channel under negative pressure [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 148-157. |
[4] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[5] | XU Maoyu, TAO Shuai, QI Cong, LIANG Lin. Start-up and temperature fluctuation of loop heat pipe with flat disk evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4531-4537. |
[6] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[7] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[8] | LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC) [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782. |
[9] | BU Zhicheng, JIAO Bo, LIN Haihua, SUN Hongyuan. Review on computational fluid dynamics (CFD) simulation and advances in pulsating heat pipes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4167-4181. |
[10] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[11] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
[12] | YANG Pengwei, YU Linzhu, WANG Fangfang, JIANG Haoxuan, ZHAO Guangjin, LI Qi, DU Mingzhe, MA Shuangchen. Application prospect, challenge and development of ammonia energy storage in new power system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4432-4446. |
[13] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[14] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[15] | LI Jiyan, JING Yanju, XING Guoyu, LIU Meichen, LONG Yong, ZHU Zhaoqi. Research progress and challenges of salt-resistant solar-driven interface photo-thermal materials and evaporator [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3611-3622. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |