Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S2): 117-125.DOI: 10.16085/j.issn.1000-6613.2021-1183
• Energy processes and technology • Previous Articles Next Articles
WANG Yingmei1,2,3,4(), NIU Aili1,2,3, ZHANG Zhaohui1,2,3, ZHAN Jing4, ZHANG Xuemin1,2,3
Received:
2021-06-03
Revised:
2021-06-23
Online:
2021-11-12
Published:
2021-11-12
Contact:
WANG Yingmei
王英梅1,2,3,4(), 牛爱丽1,2,3, 张兆慧1,2,3, 展静4, 张学民1,2,3
通讯作者:
王英梅
作者简介:
王英梅(1987—),女,博士,副教授,硕士生导师,主要从事气体水合物生成与分解动力学方面的研究。E-mail: 基金资助:
CLC Number:
WANG Yingmei, NIU Aili, ZHANG Zhaohui, ZHAN Jing, ZHANG Xuemin. Review of rapid generation methods of carbon dioxide hydrate[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 117-125.
王英梅, 牛爱丽, 张兆慧, 展静, 张学民. 二氧化碳水合物快速生成方法研究进展[J]. 化工进展, 2021, 40(S2): 117-125.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1183
1 | KUMAR A, SAKPAL T, LINGA P, et al. Influence of contact medium and surfactants on carbon dioxide clathrate hydrate kinetics[J]. Fuel, 2013, 105: 664-671. |
2 | HERSLUND P J, THOMSEN K, ABILDSKOV J, et al. Modelling of tetrahydrofuran promoted gas hydrate systems for carbon dioxide capture processes[J]. Fluid Phase Equilibria, 2014, 375: 45-65. |
3 | 王林军, 邵磊, 张学民, 等. 促进二氧化碳水合物快速生成的方法与机理的研究进展[J]. 中国沼气, 2012, 30(3): 25-29, 33. |
WANG Linjun, SHAO Lei, ZHANG Xuemin, et al. Advances on methods promoting the rapid formation of carbon dioxide hydrate and mechanisms[J]. China Biogas, 2012, 30(3): 25-29, 33. | |
4 | 孙嘉颖, 谢应明, 徐政涛, 等. 纳米流体强化CO2水合物生成的研究进展[J]. 现代化工, 2019, 39(12): 26-30. |
SUN Jiaying, XIE Yingming, XU Zhengtao, et al. Research progress in nanofluids-enhanced formation of CO2 hydrate[J]. Modern Chemical Industry, 2019, 39(12): 26-30. | |
5 | LI A R, JIANG L L, TANG S Y. An experimental study on carbon dioxide hydrate formation using a gas-inducing agitated reactor[J]. Energy, 2017, 134: 629-637. |
6 | LINGA P, KUMAR R, LEE J D, et al. A new apparatus to enhance the rate of gas hydrate formation: Application to capture of carbon dioxide[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 630-637. |
7 | LI G, LIU D P, XIE Y M, et al. Study on effect factors for CO2 hydrate rapid formation in a water-spraying apparatus[J]. Energy & Fuels, 2010, 24(8): 4590-4597. |
8 | FUJITA S, WATANABE K, MORI Y H. Clathrate-hydrate formation by water spraying onto a porous metal plate exuding a hydrophobic liquid coolant[J]. AIChE Journal, 2009, 55(4): 1056-1064. |
9 | MYRE D, MACCHI A. Heat transfer and bubble dynamics in a three-phase inverse fluidized bed[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(5): 523-529. |
10 | SHU B F, MA X L, GUO K H, et al. Influences of different types of magnetic fields on HCFC-141b gas hydrate formation processes[J]. Science in China Series B: Chemistry, 2004, 47(5): 428-433. |
11 | BAI J, LI D, LIANG D. Thermal analysis on the process of CO2 hydrate formation in static higee reactor[J]. Natural Gas Chemical Industry, 2010, 35(4): 30-34. |
12 | LIANG D Q, HE S, LI D L. Effect of microwave on formation/decomposition of natural gas hydrate[J]. Chinese Science Bulletin, 2009, 54(6): 965-971. |
13 | YE N, ZHANG P, LIU Q S. Kinetics of hydrate formation in the CO2+TBAB+H2O system at low mass fractions[J]. Industrial & Engineering Chemistry Research, 2014, 53(24): 10249-10255. |
14 | BABU P, CHIN W I, KUMAR R, et al. Systematic evaluation of tetra-n-butyl ammonium bromide (TBAB) for carbon dioxide capture employing the clathrate process[J]. Industrial & Engineering Chemistry Research, 2014, 53(12): 4878-4887. |
15 | NGUYEN N N, NGUYEN A V, NGUYEN K T, et al. Unexpected inhibition of CO2 gas hydrate formation in dilute TBAB solutions and the critical role of interfacial water structure[J]. Fuel, 2016, 185: 517-523. |
16 | RAJABI FIROOZABADI S, BONYADI M. A comparative study on the effects of Fe3O4 nanofluid, SDS and CTAB aqueous solutions on the CO2 hydrate formation[J]. Journal of Molecular Liquids, 2020, 300: 112251. |
17 | MOLOKITINA N S, NESTEROV A N, PODENKO L S, et al. Carbon dioxide hydrate formation with SDS: Further insights into mechanism of gas hydrate growth in the presence of surfactant[J]. Fuel, 2019, 235: 1400-1411. |
18 | CHOI J W, CHUNG J T, KANG Y T. CO2 hydrate formation at atmospheric pressure using high efficiency absorbent and surfactants[J]. Energy, 2014, 78: 869-876. |
19 | YU Y S, XU C G, LI X S. Evaluation of CO2 hydrate formation from mixture of graphite nanoparticle and sodium dodecyl benzene sulfonate[J]. Journal of Industrial and Engineering Chemistry, 2018, 59: 64-69. |
20 | ZHOU S D, JIANG K, ZHAO Y L, et al. Experimental investigation of CO2 hydrate formation in the water containing graphite nanoparticles and tetra-n-butyl ammonium bromide[J]. Journal of Chemical & Engineering Data, 2018, 63(2): 389-394. |
21 | KAWASAKI T, OBARA S. CO2 hydrate heat cycle using a carbon fiber supported catalyst for gas hydrate formation processes[J]. Applied Energy, 2020, 269: 115125. |
22 | MOEINI H, BONYADI M, ESMAEILZADEH F, et al. Experimental study of sodium chloride aqueous solution effect on the kinetic parameters of carbon dioxide hydrate formation in the presence/absence of magnetic field[J]. Journal of Natural Gas Science and Engineering, 2018, 50: 231-239. |
23 | FIROOZABADI S R, BONYADI M, LASHANIZADEGAN A. Experimental investigation of Fe3O4 nanoparticles effect on the carbon dioxide hydrate formation in the presence of magnetic field[J]. Journal of Natural Gas Science and Engineering, 2018, 59: 374-386. |
24 | 周麟晨, 孙志高, 李娟, 等. 水合物形成促进剂研究进展[J]. 化工进展, 2019, 38(9): 4131-4141. |
ZHOU Linchen, SUN Zhigao, LI Juan, et al. Progress of hydrate formation promoters[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4131-4141. | |
25 | 张雪艳, 周诗岽, 姬浩洋, 等. 氧化石墨烯/纳米石墨颗粒与SDS复配对CO2水合物生成特性的影响[J]. 天然气化工(C1化学与化工), 2021, 46(2): 53-58. |
ZHANG Xueyan, ZHOU Shidong, JI Haoyang, et al. Effect of GO/GN and SDS compound system on formation characteristics of CO2 hydrate[J]. Natural Gas Chemical Industry, 2021, 46(2): 53-58. | |
26 | PHAN A, SCHLÖSSER H, STRIOLO A. Molecular mechanisms by which tetrahydrofuran affects CO2 hydrate Growth: Implications for carbon storage[J]. Chemical Engineering Journal, 2021, 418: 129423. |
27 | 白飞亚, 刘妮. 添加剂对CO2水合物生成影响机理的研究进展[J]. 制冷技术, 2017, 37(2): 20-24, 31. |
BAI Feiya, LIU Ni. Research progress on impact mechanisms of additives on CO2 hydrate formation[J]. Chinese Journal of Refrigeration Technology, 2017, 37(2): 20-24, 31. | |
28 | 胡亚飞, 蔡晶, 李小森. 盐水体系环戊烷-甲烷水合物生成过程温度特性[J]. 天然气化工(C1化学与化工), 2017, 42(1): 58-66. |
HU Yafei, CAI Jing, LI Xiaosen. Temperature properties in brine system in the formation process of cyclopentane-methane binary hydrates[J]. Natural Gas Chemical Industry, 2017, 42(1): 58-66. | |
29 | 孙贤, 刘德俊. 二氧化碳水合物动力学促进剂研究进展[J]. 化工进展, 2018, 37(2): 517-524. |
SUN Xian, LIU Dejun. Advances in carbon dioxide hydrate kinetic additives[J]. Chemical Industry and Engineering Progress, 2018, 37(2): 517-524. | |
30 | ZHONG Y, ROGERS R E. Surfactant effects on gas hydrate formation[J]. Chemical Engineering Science, 2000, 55(19): 4175-4187. |
31 | 张琳, 王树立, 周诗岽, 等. 表面活性剂用于促进气体水合物生成研究的进展[J]. 应用化学, 2014, 31(5): 505-512. |
ZHANG Lin, WANG Shuli, ZHOU Shidong, et al. Research progress in surfactant effects on promoting gas hydrate formation[J]. Chinese Journal of Applied Chemistry, 2014, 31(5): 505-512. | |
32 | 余汇军, 王树立, 江光世, 等. 表面活性剂对CO2水合物生成影响的实验研究[J]. 常州大学学报(自然科学版), 2011, 23(2): 55-59. |
YU Huijun, WANG Shuli, JIANG Guangshi, et al. Experimental study of the impact of compound additives on CO2 hydrate formation conditions[J]. Journal of Changzhou University (Natural Science Edition), 2011, 23(2): 55-59. | |
33 | 张强, 吴强, 张保勇, 等. NaCl-SDS复合溶液中多组分瓦斯水合物成核动力学机理[J]. 煤炭学报, 2015, 40(10): 2430-2436. |
ZHANG Qiang, WU Qiang, ZHANG Baoyong, et al. Nucleation kinetics mechanism of multi-component mine gas hydrate in NaCl-SDS mixed solutions[J]. Journal of China Coal Society, 2015, 40(10): 2430-2436. | |
34 | 吴强, 周竹青, 高霞, 等. NaCl溶液中多组分瓦斯水合物的成核诱导时间[J]. 煤炭学报, 2015, 40(6): 1396-1401. |
WU Qiang, ZHOU Zhuqing, GAO Xia, et al. Nucleation induction time of multi-component gas hydrate in NaCl solution [J]. Journal of China Coal Society, 2015, 40(6): 1396-1401. | |
35 | TAO D. Gas hydrate to capture and sequester CO2 [D]. Mississippi: University of Mississippi, 2004. |
36 | 王树立, 余汇军, 石青树, 等. 复合添加剂对二氧化碳水合物生成条件影响的实验研究及动力学模型建立[J]. 天然气化工(C1化学与化工), 2011, 36(1): 20-22, 33. |
WANG Shuli, YU Huijun, SHI Qingshu, et al. Experimental study of effects of compound additives on CO2 hydrate formation conditions and kinetic model establishment[J]. Natural Gas Chemical Industry, 2011, 36(1): 20-22, 33. | |
37 | 余汇军, 王树立, 宋琦. 添加剂对二氧化碳水合物生成特性的影响[J]. 化学工业与工程, 2010, 27(5): 411-414. |
YU Huijun, WANG Shuli, SONG Qi. Influence of additives on the generation characteristics of CO2 hydrate[J]. Chemical Industry and Engineering, 2010, 27(5): 411-414. | |
38 | 靳远, 米雪源, 马贵阳, 等. 多孔介质与SDS复配对甲烷水合物生成的影响[J]. 精细石油化工, 2020, 37(3): 47-51. |
JIN Yuan, MI Xueyuan, MA Guiyang, et al. Effect of complex system of porous media and sds on methane hydrate formation[J]. Speciality Petrochemicals, 2020, 37(3): 47-51. | |
39 | 臧小亚, 梁德青, 吴能友. 细砂沉积物中水合物生成过程研究[J]. 中国科学: 地球科学, 2013, 43(3): 360-367. |
ZANG Xiaoya, LIANG Deqing, WU Nengyou. Study on hydrate formation process in fine sand sediments [J]. Scientia Sinica (Terrae), 2013, 43(3): 360-367. | |
40 | CHATURVEDI E, LAIK S, MANDAL A. A comprehensive review of the effect of different kinetic promoters on methane hydrate formation[J]. Chinese Journal of Chemical Engineering, 2021, 32: 1-16. |
41 | 马玉亮, 谢锐杰, 郑欢, 等. 甲烷在SDS+纳米SiO2+泡沫铝中存储量研究[J]. 西安石油大学学报(自然科学版), 2020, 35(5): 116-121. |
MA Yuliang, XIE Ruijie, ZHENG Huan, et al. Study on storage of CH4 in SDS+Nano SiO2+Foam aluminum[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2020, 35(5): 116-121. | |
42 | 周诗岽, 余益松, 甘作全, 等. 纳米石墨颗粒对气体水合物生成诱导时间的影响[J]. 天然气化工(C1化学与化工), 2015, 40(1): 60-64. |
ZHOU Shidong, YU Yisong, GAN Zuoquan, et al. Effect of graphite nanoparticles on induction time of gas hydrate formation[J]. Natural Gas Chemical Industry, 2015, 40(1): 60-64. | |
43 | 周诗岽, 张锦, 赵永利, 等. 纳米石墨颗粒与SDS复配对CO2水合物生成诱导时间的影响[J]. 科学技术与工程, 2016, 16(1): 58-62. |
ZHOU Shidong, ZHANG Jin, ZHAO Yongli, et al. Effect of graphite nanoparticles and SDS on induction time of gas hydrate formation[J]. Science Technology and Engineering, 2016, 16(1): 58-62. | |
44 | 周诗岽, 于雪薇, 李青岭, 等. 纳米石墨颗粒与SDS复配对水合物生成特性的影响[J]. 天然气化工(C1化学与化工), 2017, 42(2): 50-53, 118. |
ZHOU Shidong, YU Xuewei, LI Qingling, et al. Effect of graphite nanoparticles and SDS on hydrate formation characteristics[J]. Natural Gas Chemical Industry, 2017, 42(2): 50-53, 118. | |
45 | ZHANG F Y, WANG X L, LOU X, et al. The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications[J]. Energy, 2021, 227: 120424. |
46 | LU H L, MATSUMOTO R. Experimental studies on the possible influences of composition changes of pore water on the stability conditions of methane hydrate in marine sediments[J]. Marine Chemistry, 2005, 93(2/3/4): 149-157. |
47 | ATIK Z, WINDMEIER C, OELLRICH L R. Experimental gas hydrate dissociation pressures for pure methane in aqueous solutions of MgCl2 and CaCl2 and for a (methane + ethane) gas mixture in an aqueous solution of (NaCl + MgCl2)[J]. Journal of Chemical & Engineering Data, 2006, 51(5): 1862-1867. |
48 | 王树立, 宋琦, 郑志, 等. 不同类型体系下复合型添加剂对水合物生成的影响[J]. 天然气化工(C1化学与化工), 2009, 34(6): 44-48. |
WANG Shuli, SONG Qi, ZHENG Zhi, et al. Effect of compound additives on natural gas hydrate formation in different systems[J]. Natural Gas Chemical Industry, 2009, 34(6): 44-48. | |
49 | YANG S H B, BABU P, CHUA S F S, et al. Carbon dioxide hydrate kinetics in porous media with and without salts[J]. Applied Energy, 2016, 162: 1131-1140. |
50 | LU H L, MATSUMOTO R, TSUJI Y, et al. Anion plays a more important role than cation in affecting gas hydrate stability in electrolyte solution? —a recognition from experimental results[J]. Fluid Phase Equilibria, 2001, 178(1/2): 225-232. |
51 | 王树立, 张琳, 赵苗苗, 等. 离子液体促进剂对气体水合物生成液表面张力的影响[J]. 精细石油化工, 2014, 31(2): 61-66. |
WANG Shuli, ZHANG Lin, ZHAO Miaomiao, et al. Effects of ionic liquid on surface tension of gas hydrate formation solution[J]. Speciality Petrochemicals, 2014, 31(2): 61-66. | |
52 | DICKENS G R, QUINBY-HUNT M S. Methane hydrate stability in pore water: a simple theoretical approach for geophysical applications[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B1): 773-783. |
53 | SABIL K M, DUARTE A R C, ZEVENBERGEN J, et al. Kinetic of formation for single carbon dioxide and mixed carbon dioxide and tetrahydrofuran hydrates in water and sodium chloride aqueous solution[J]. International Journal of Greenhouse Gas Control, 2010, 4(5): 798-805. |
54 | 陈烨, 闫铁, 孙晓峰, 等. 基于Multiflash的天然气水合物相平衡影响因素及规律[J]. 成都理工大学学报(自然科学版), 2020, 47(3): 358-366. |
CHEN Ye, YAN Tie, SUN Xiaofeng, et al. Study on influence factors and rules of gas hydrate phase equilibrium based on multiflash software[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2020, 47(3): 358-366. | |
55 | 潘振, 刘志明, 刘德俊, 等. 多孔介质中天然气水合物生成影响因素研究进展[J]. 化工进展, 2017, 36(12): 4403-4415. |
PAN Zhen, LIU Zhiming, LIU Dejun, et al. Research progress on influence factors of natural gas hydrate formation in porous media[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4403-4415. | |
56 | 赵红芳, 杨亚玲, 刘东辉, 等. 阴离子-两性离子表面活性剂复配体系及NaCl对其表面活性的影响[J]. 应用化工, 2006, 35(7): 535-536, 542. |
ZHAO Hongfang, YANG Yaling, LIU Donghui, et al. Mixed system of anionic and zwitterionic surfactants and the effects of NaCl on surface activity[J]. Applied Chemical Industry, 2006, 35(7): 535-536, 542. | |
57 | 刘唯一, 陈勇, 王淼, 等. 盐类对甲烷水合物稳定性影响研究进展[J]. 岩矿测试, 2018, 37(2): 111-120. |
LIU Weiyi, CHEN Yong, WANG Miao, et al. Research progress on the effect of salts on the stability of methane hydrate[J]. Rock and Mineral Analysis, 2018, 37(2): 111-120. | |
58 | 杨顶辉, XU Wenyue. 盐度对甲烷气水合物系统的影响[J]. 中国科学(D辑: 地球科学), 2007, 37(10): 1370-1381. |
YANG Dinghui, XU Wenyue. Effect of salinity on methane gas hydrate system [J]. Science in China (Series D: Earth Sciences), 2007, 37(10): 1370-1381. | |
59 | MEKALA P, BABU P, SANGWAI J S, et al. Formation and dissociation kinetics of methane hydrates in seawater and silica sand[J]. Energy & Fuels, 2014, 28(4): 2708-2716. |
[1] | ZHANG Dailing, DING Yumei, ZUO Xiahua, LI Haowei, YANG Weimin, YAN Hua, AN Ying. Photothermal characteristics of waste toner nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4791-4798. |
[2] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
[3] | GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming. Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324. |
[4] | ZHU Qichen, WU Zhangyong, WANG Zhiqiang, JIANG Jiajun, LI Xiang. Sedimentation stability and viscosity properties of silicone oil-based magnetic nanofluid at low temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5101-5110. |
[5] | WANG Yinmei, ZHANG Zhaohui, LIU Shenghao, JIAO Wenze, WANG Lijin, TENG Yadong, LIU Jie. Atmospheric pressure decomposition of carbon dioxide hydrate in accelerator system [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 141-149. |
[6] | LU Shijian, LIU Ling, LIU Ziwu, GUO Bowen, YU Xulin, LIANG Yan, ZHAO Dongya, ZHU Quanmin. Study of CO2 absorption stability of AEP-DPA-CuO phase change nanofluids [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4555-4561. |
[7] | LI Peishan, ZHANG Mengchen, LI Mingjie, ZHENG Wenbiao, LIU Minchao, XIE Gaoyi, XU Xiaolong, LIU Changyu, JIA Jianbo. Nanofluidic channels based on two-dimensional material membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3745-3757. |
[8] | LI Yucan, HU Dinghua, LIU Jinhui. Evolution characteristics of transient evaporation rate of Al2O3 nanofluid droplet [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3493-3501. |
[9] | LIN Qingyu, WANG Zhu, FENG Zhenfei, LING Biao, CHEN Zhen. Review progress on twisted tape structure for heat transfer and entropy generation in tube [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5709-5721. |
[10] | YU Yanfang, CHEN Yaxin, MENG Huibo, WANG Zongyong, WU Jianhua. Analysis of turbulent heat transfer characteristics of nanofluids in the Lightnin static mixer [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 30-39. |
[11] | MA Mingyan, ZHAI Yuling, XUAN Zihao, ZHOU Shuguang, LI Zhixiang. Stability and thermal performance of ternary hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4179-4186. |
[12] | Shuli WANG,Junyao HUANG,Shuo YAN,Yongchao RAO,Ru JIA,Bin LIU. Hydrate formation kinetics based on chemical affinity model [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 966-974. |
[13] | Shulan MIAO, Xia CHEN, Dengfeng ZHOU, Tianjiao LAN, Ping LI, Yanan WANG. Resource utilization of polyphenylene sulfide production wastewater [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4283-4289. |
[14] | Xuzhong ZANG,Er SHI,Junping FU,Tao YU. A review of magnetic field effects on flow and heat transfer in magnetic nanofluids [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5410-5419. |
[15] | Yuling ZHAI,Jiang WANG,Long LI,Mingyan MA,Peitao YAO. Evaluation and effect of mixture ratio on heat transfer performance of Al2O3/water nanofluids [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4865-4872. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |