Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S2): 126-139.DOI: 10.16085/j.issn.1000-6613.2021-0968
• Energy processes and technology • Previous Articles Next Articles
WANG Shuai1(), ZHAO Jinzhu2, WANG Rongyuan3, CUI Kaixiang1, JING Jiaqiang4,5
Received:
2021-05-08
Revised:
2021-05-19
Online:
2021-11-12
Published:
2021-11-12
Contact:
WANG Shuai
王帅1(), 赵金柱2, 王荣元3, 崔凯翔1, 敬加强4,5
通讯作者:
王帅
作者简介:
王帅(1991—),男,博士,讲师,研究方向为易凝高黏原油多相流动保障。E-mail:基金资助:
CLC Number:
WANG Shuai, ZHAO Jinzhu, WANG Rongyuan, CUI Kaixiang, JING Jiaqiang. New ideas of heavy oil flow drag reduction by emulsification and wetting coupling action[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 126-139.
王帅, 赵金柱, 王荣元, 崔凯翔, 敬加强. 乳化/润湿耦合作用稠油流动减阻新思路[J]. 化工进展, 2021, 40(S2): 126-139.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0968
1 | 邹才能, 潘松圻, 赵群. 论中国“能源独立”战略的内涵、挑战及意义[J]. 石油勘探与开发, 2020, 47(2): 416-426. |
ZOU C N, PAN S Q, ZHAO Q. On the connotation, challenge and significance of China’s“energy independence” strategy[J]. Petroleum Exploration and Development, 2020, 47(2): 416-426. | |
2 | CONTRERAS-MATEUS M, LÓPEZ-LÓPEZ M, ARIZA-LEON E, et al. Rheological implications of the inclusion of ferrofluids and the presence of uniform magnetic field on heavy and extra-heavy crude oils[J]. Fuel, 2021, 285: 119184. |
3 | GUDALA M, BANERJEE S, NAIYA T, et al. Hydrodynamics and energy analysis of heavy crude oil transportation through horizontal pipelines using novel surfactant[J]. Journal of Petroleum Science and Engineering, 2019, 178: 140-151. |
4 | TABORDA E, ALVARADO V, CORTÉS F. Effect of SiO2-based nanofluids in the reduction of naphtha consumption for heavy and extra-heavy oils transport: economic impacts on the Colombian market[J]. Energy Conversion and Management, 2017, 148: 30-42. |
5 | LI P C, ZHANG F S, GONG Y J, et al. Synthesis and properties of functional polymer for heavy oil viscosity reduction[J]. Journal of Molecular Liquids,2021, 330: 115635. |
6 | 贾承造. 中国石油工业上游发展面临的挑战与未来科技攻关方向[J]. 石油学报, 2020, 41(12): 1445-1464. |
JIA C Z. Development challenges and future scientific and technological researches in China’s petroleum industry upstream[J]. Acta Petrolei Sinica, 2020, 41(12): 1445-1464. | |
7 | LI H Y, ZHANG J J, XU Q G, et al. Influence of asphaltene on wax deposition: deposition inhibition and sloughing[J]. Fuel, 2020, 266: 117047, 1-8. |
8 | 高德利, 朱旺喜, 李军, 等. 深水油气工程科学问题与技术瓶颈——第147期双清论坛学术综述[J]. 中国基础科学, 2016, 18(3): 1-6. |
GAO D L, ZHU W X, LI J, et al. Scientific problems and technical bottlenecks in deepwater oil & gas engineering—Academic review of the 147th Shuangqing forum[J]. China Basic Science, 2016, 18(3): 1-6. | |
9 | MARTÍNEZ-PALOU R, MOSQUEIRA M, ZAPATA-RENDÓN B, et al. Transportation of heavy and extra-heavy crude oil by pipeline: a review[J]. Journal of Petroleum Science and Engineering, 2011, 75: 274-282. |
10 | 张劲军. 易凝高黏原油管输技术及其发展[J]. 中国工程科学, 2002, 4(6): 71-76. |
ZHANG J J. Technologies for pipelining high-pour-point and viscous crudes and their development[J]. Engineering Science, 2002, 4(6): 71-76. | |
11 | 赵德银, 郭靖, 樊敏, 等. 油田采出液输送中降黏减阻剂研究进展[J]. 材料保护, 2020, 53(11): 122-128. |
ZHAO D Y, GUO J, FAN M, et al. Progress of viscosity - reducing and drag-reducing agents in the transportation of the oil produced fluid[J]. Materials Protection, 2020, 53(11): 122-128. | |
12 | 熊钰, 冷傲燃, 孙业恒, 等. 稠油冷采降黏剂分散机理与驱替实验评价[J]. 新疆石油地质, 2021, 42(1): 68-75. |
XIONG Y, LENG A R, SUN Y H, et al. Dispersion mechanism of viscosity reducer and evaluation of displacement experiment for cold production of heavy oil[J]. Xinjiang Petroleum Geology, 2021, 42(1): 68-75. | |
13 | SANTOS R, BRINCENO M, LOH W. Laminar pipeline flow of heavy oil-in-water emulsions produced by continuous in-line emulsification[J]. Journal of Petroleum Science and Engineering, 2017, 156: 827-834. |
14 | NOWROUZI I, MOHAMMADI A, MANSHAD A. Water-oil interfacial tension (IFT) reduction and wettability alteration in surfactant flooding process using extracted saponin from Anabasis Setifera plant[J]. Journal of Petroleum Science and Engineering, 2020, 189: 106901, 1-10. |
15 | ESLAMI A, TAGHAVI S. Viscous fingering of yield stress fluids: the effects of wettability[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 264: 25-47. |
16 | 王新宇, 张帅拓, 刘建, 等. 表面织构对管道内壁碳基涂层润湿性与摩擦学性能影响[J]. 摩擦学学报, 2021, 41(1): 86-94. |
WANG X, ZHANG S, LIU J, et al. Effect of surface texture on wettability and tribological properties of carbon-based coatings on the inner surface of pipes[J]. Tribology, 2021, 41(1): 86-94. | |
17 | JOSEPH D. Lubricated pipelining[J]. Powder Technology, 1997, 94: 211-215. |
18 | TRIPATHI S, BHATTACHARY A, SINGH R, et al. Lubricated transport of highly viscous non-newtonian fluid as core-annular flow: a CFD study[J]. Procedia IUTAM, 2015, 15: 278-285. |
19 | 郡捷年. 无机离子在油基泥浆所引起储层润湿反转过程中的作用[J]. 石油学报, 1992, 13(4): 104-113. |
YAN J N. The role of inorganic ions played in the vettability reversal of reservoir rocks caused by oil-based muds[J]. Acta Petrolei Sinica, 1992, 13(4): 104-113. | |
20 | 蒋平, 张贵才, 葛际江, 等. 表面活性剂剥离固体表面原油机理[J]. 石油学报(石油加工), 2008, 24(2): 222-226. |
JIANG P, ZHANG G C, GE J J, et al. The mechanism of oil displacement from solid surface by surfactant[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2008, 24(2): 222-226. | |
21 | 任晓娟, 刘宁, 曲志浩, 等. 改变低渗透砂岩亲水性油气层润湿性对其相渗透率的影响[J]. 石油勘探与开发, 2005, 32(3): 123-124. |
REN X J, LIU N, QU Z H, et al. Effect of wettability alteration on the relative permeability of low-permeability water-wet oil and gas reservoir[J]. Petroleum Exploration and Development, 2005, 32(3): 123-124. | |
22 | PEYSSON Y, BENSAKHRIA A, ANTONINI G, et al. Pipeline lubrication of heavy oil: experimental investigation of flow and restart problems[C]// Prepared for presentation at the SPE International Thermal Operationsand Heavy Oil Symposium held in Calgary, Alberta, Canada, 2005. |
23 | 张明露, 马挺, 李国强, 等. 一株耐热石油烃降解菌的细胞疏水性及乳化、润湿作用研究[J]. 微生物学通报, 2008, 35(9): 1348-1352. |
ZHANG M, MA T, LI G Q, et al. Cell-surface hydrophobicity, emulsification and wetting property of a high temperature hydrocarbon-degrading strain[J]. Microbiology, 2008, 35(9): 1348-1352. | |
24 | 李小波, 刘曰武, 李树皎, 等. 乳化和润湿反转现象的耗散粒子动力学研究[J]. 石油学报, 2009, 30(2): 259-262. |
LI X B, LIU Y W, LI S J, et al. Simulation of emulsification and wettability alteration phenomena with dissipative particle dynamics[J]. Acta Petrolei Sinica, 2009, 30(2): 259-262. | |
25 | 李爱芬, 任晓霞, 江凯亮, 等. 表面活性剂改善稠油油藏水驱开发效果实验研究——以东辛油田深层稠油油藏为例[J]. 油气地质与采收率, 2014, 21(2): 18-21. |
LI A F, REN Xiaoxia, JIANG Kailianget al. Experimental study on influencing factors of injecting surfactant to improve water flooding for heavy oil reservoir-case of Dongxin heavy oil reservoir[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(2): 18-21. | |
26 | SILVA R D, MOHAMED R S, BANNWART A C. Wettability alteration of internal surfaces of pipelines for use in the transportation of heavy oil via core-flow[J]. Journal of Petroleum Science and Engineering, 2006, 51: 17-25. |
27 | 孙娜娜, 敬加强, 蒋华义, 等. 稠油水包油型乳状液表观黏度的影响因素及预测模型[J]. 石油学报(石油加工), 2016, 32(5): 987-996. |
SUN N N, JING J Q, JIANG H Y, et al. Influencing factors and prediction model of apparent viscosity of heavy oil O/W emulsion[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2016, 32(5): 987-996. | |
28 | GONG H J, LI Y J, DONG M Z, et al. Effect of wettability alteration on enhanced heavy oil recovery by alkaline flooding[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 488: 28-35. |
29 | QI H Y, LIANG A G, JIANG H Y, et al. Effect of pipe surface wettability on flow slip property[J]. Industrial & Engineering Chemistry Research, 2018, 57: 12543-12550. |
30 | 姚同玉, 萧汉敏, 孙灵辉. 系列季铵盐型表面活性剂润湿性能与润湿模型研究[J]. 表面技术, 2018, 47(10): 66-71. |
YAO T Y, XIAO H M, SUN L H. Wetting behavior and wetting model of series quaternary ammonium surfactant[J]. Surface Technology, 2018, 47(10): 66-71. | |
31 | 孙灵辉, 吴赞校, 姚同玉, 等. 新型季铵盐Gemini表面活性剂润湿性能测定与润湿模型建立[J]. 油田化学, 2018, 35(4): 709-714. |
SUN L H,WU Z X,YAO T Y, et al. Wettability determination and wetting model of a new quaternary ammonium salt Gemini surfactant[J]. Oilfield Chemistry, 2018, 35(4): 709-714. | |
32 | LIU L M, PAN Y L, JIANG K D, et al. On-demand oil/water separation enabled by magnetic super-oleophobic/super-hydrophilic surfaces with solvent-responsive wettability transition[J]. Applied Surface Science, 2020, 533: 147092. |
33 | MOHAMMED M, BABADAGLI T. New insights into the interfacial phenomena occurring between hydrocarbon solvent and heavy oil[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108022, 1-19. |
34 | SIMON S, RUWOLDT J, SJÖBLOM J. A critical update of experimental techniques of bulk and interfacial components for fluid characterization with relevance to well fluid processing and transport[J]. Advances in Colloid and Interface Science, 2020, 277: 102120. |
35 | ZHANG L, XIE L, CUI X W, et al. Intermolecular and surface forces at solid/oil/water/gas interfaces in petroleum production[J]. Journal of Colloid and Interface Science, 2019, 537: 505-519. |
36 | KAZZAZ A E, FATEHI P. Fabrication of amphoteric lignin and its hydrophilicity/oleophilicity at oil/water interface[J]. Journal of Colloid and Interface Science, 2020, 561: 231-243. |
37 | UMAR A A, SAAID I B, SULAIMON A A, et al. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids[J]. Journal of Petroleum Science and Engineering, 2018, 165: 673-690. |
38 | ASHRAFIZADEH S N, MOTAEE E, HOSHYARGAR V. Emulsification of heavy crude oil in water by natural surfactants[J]. Journal of Petroleum Science and Engineering, 2012, 86/87: 137-143. |
39 | MALKIN A Y, ZADYMOVA N M, SKVORTSOVA Z N, et al. Formation of concentrated emulsions in heavy oil[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 504: 343-349. |
40 | 孙广宇, 张劲军. W/O型原油乳状液及其凝胶流变特性研究进展[J]. 油气储运, 2016, 35(3): 229-240. |
SUN G Y, ZHANG J J. Progress in rheological studies of W/O emulsion and its gel[J]. Oil & Gas Storage and Transportation, 2016, 35(3): 229-240. | |
41 | ZADYMOVA N M, SKVORTSOVA Z N, TRASKIN V Y, et al. Heavy oil as an emulsion: composition, structure, and rheological properties[J]. Colloid Journal, 2016, 78(6): 735-746. |
42 | 寇杰, 肖荣鸽. 东辛稠油反相乳化降黏集输试验[J]. 中国石油大学学报(自然科学版), 2010, 34(4): 162-166. |
KOU J, XIAO R G. Experiment on invert emulsion viscosity reducing transportation for Dongxin heavy oil[J]. Journal of China University of Petroleum, 2010, 34(4): 162-166. | |
43 | 蒋华义, 张兰新, 孙娜娜, 等. 稠油水包油型乳状液稳定性与流变性影响因素[J]. 油气储运, 2018, 37(10):1121-1127. |
JIANG H Y, ZHANG L X, SUN N N, et al. The factors influencing the stability and rheological property of heavy O/W emulsion[J]. Oil & Gas Storage and Transportation, 2018, 37(10): 1121-1127. | |
44 | LEE J, BABADAGLI T. Comprehensive review on heavy-oil emulsions: colloid science and practical applications[J]. Chemical Engineering Science, 2020, 228: 115962. |
45 | BAZYLEVA A B, HASAN M D, FULEM M, et al. Bitumen and heavy oil rheological properties: reconciliation with viscosity measurements[J]. Journal of Chemical and Engineering Data, 2010, 55(3): 1389-1397. |
46 | ZHANG J, XU J, GAO M, et al. Apparent viscosity of oil-water (coarse) emulsion and its rheological characterization during the phase inversion region[J]. Journal of Dispersion Science and Technology, 2013, 34(8): 1148-1160. |
47 | WEN J, LUO H, LONG Z. Emulsification behaviors of crude oil-water system and its quantitative relationship with exergy loss rate[J]. Journal of Petroleum Science and Engineering, 2019, 176: 502-508. |
48 | ASHRAFIZADEH S N, KAMRAN M. Emulsification of heavy crude oil in water for pipeline transportation[J]. Journal of Petroleum Science and Engineering, 2010, 71: 205-211. |
49 | 安云朋, 敬加强, 刘雪健, 等. 稠油O/W型乳状液的低温稳定性[J]. 油田化学, 2014, 31(2): 256-260. |
AN Y P, JING J Q, LIU X J, et al. Stability of heavy oil-in-water emulsion at low temperature[J]. Oilfield Chemistry, 2014, 31(2): 256-260. | |
50 | MEROLA M C, CAROTENUTO C, GARGIULO V, et al. Chemical-physical analysis of rheologically different samples of a heavy crude oil[J]. Fuel Processing Technology, 2016, 148: 236-247. |
51 | SUN N N, JING J Q, JIANG H Y, et al. Effects of surfactants and alkalis on the stability of heavy-oil-in-water emulsions[J]. SPE Journal, 2017, 2: 120-129. |
52 | PANG S S, PU W F, XIE J Y, et al. Investigation into the properties of water-in-heavy oil emulsion and its role in enhanced oil recovery during water flooding[J]. Journal of Petroleum Science and Engineering, 2019, 177: 798-807. |
53 | ABDULREDHA M M, HUSSAIN S A, ABDULLAH L C. Overview on petroleum emulsions, formation, influence and demulsification treatment techniques[J]. Arabian Journal of Chemistry, 2020, 13: 3403-3428. |
54 | 李美蓉, 向浩, 马济飞. 特稠油乳化降黏机理研究[J]. 燃料化学学报, 2006, 34(2): 175-178. |
LI M R, XIANG H, MA J F. Mechanism of viscosity reduction of ultra-heavy oil by emulsification[J]. Journal of Fuel Chemistry and Technology, 2006, 34(2): 175-178. | |
55 | KRALOVA I, SJÖBLOM J, ØYE G, et al. Heavy crude oils/particle stabilized emulsions[J]. Advances in Colloid and Interface Science, 2011, 169: 106-127. |
56 | 李美蓉, 赵娜娜, 方洪波, 等. 表征化学驱采出液稳定性不同指标的关联性[J]. 石油学报(石油加工), 2012, 28(4): 612-616. |
LI M R, ZHAO N N, FANG H B, et al. Relevance between characterization indices of the stability of chemical flooding produced fluid[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2012, 28(4): 612-616. | |
57 | 李美蓉, 齐霖艳, 王伟琳, 等. 胜利超稠油的乳化降黏机理研究[J]. 燃料化学学报, 2013, 41(6): 679-684. |
LI M R, QI L Y, WANG W L, et al. Mechanism of viscosity reduction of super heavy oil of Shengli oil field[J]. Journal of Fuel Chemistry and Technology, 2013, 41(6): 679-684. | |
58 | ZHOU H D, DAI C L, ZHANG Q S, et al. Interfacial rheology of novel functional silica nanoparticles adsorbed layers at oil-water interface and correlation with Pickering emulsion stability[J]. Journal of Molecular Liquids, 2019, 293: 111500. |
59 | PEI H H, SHU Z, ZHANG G C, et al. Experimental study of nanoparticle and surfactant stabilized emulsion flooding to enhance heavy oil recovery[J]. Journal of Petroleum Science and Engineering, 2018, 163: 476-483. |
60 | IMANIA I M, AZIZIAN S, NOEI N, et al. Study of O/W emulsion stability in presence of SDS and graphitic carbon nitride (g-C3N4) nanosheets[J]. Colloids and Surfaces A, 2020, 586: 124191. |
61 | TIAN S J, WEI G, LIU Y J, et al. Study on the stability of heavy crude oil-in-water emulsions stabilized by two different hydrophobic amphiphilic polymers[J]. Colloids and Surfaces A, 2019, 572: 299-306. |
62 | 王艳萍, 孙风跃, 梁心怡, 等. 耐温耐盐乳化降黏剂的结构设计及其构效关系[J]. 精细化工, 2020, 37(4): 826-833. |
WANG Y P, SUN F Y, LIANG X Y, et al. Structure design and structure-function relationship of emulsified viscosity reducers with temperature resistance and salt tolerance[J]. Fine Chemicals, 2020, 37(4): 826-833. | |
63 | PIROOZIAN A, HEMMATIC M, SAFARI M, et al. A mechanistic understanding of the water-in-heavy oil emulsion viscosity variation: effect of asphaltene and wax migration[J]. Colloids and Surfaces A, 2021, 608: 125604. |
64 | 孙广宇, 张劲军. 含蜡原油乳状液凝胶结构裂降行为模型[J]. 油气储运, 2017, 36(1): 49-58. |
SUN Guangyu, ZHANG Jinjun. A model used to describe the structural breakdown behavior of waxy crude oil emulsion gel[J]. Oil & Gas Storage and Transportation, 2017, 36(1): 49-58. | |
65 | AFRA S, NASR-EL-DIN H A, SOCCI D, et al. Green phenolic amphiphile as a viscosity modifier and asphaltenes dispersant for heavy and extra-heavy oil[J]. Fuel, 2018, 220: 481-489. |
66 | CHEN Q, ZHU Y, WANG M, et al. Viscosity reduction of extra-heavy oil using toluene in water emulsions[J]. Colloids and Surfaces A, 2019, 560: 252-259. |
67 | NETO D M, SAD C M, SILVA M, et al. Rheological study of the behavior of water-in-oil emulsions of heavy oils[J]. Journal of Petroleum Science and Engineering, 2019, 173: 1323-1331. |
68 | CISNEROS-DÉVORA R, CERÓN-CAMACHO R, SOTO-CASTRUITA E, et al. A theoretical study of crude oil emulsions stability due to supramolecular assemblies[J]. Colloids and Surfaces A, 2019, 567: 121-127. |
69 | 辛寅昌, 董晓燕, 卞介萍, 等. 高矿化度稠油流动的影响因素及改善原油流动的方法[J]. 石油学报, 2010, 31(3): 480-485. |
XIN Y C, DONG X Y, BIAN J P, et al. Affecting factors for flow ability of high-salinity heavy oil and methods for improving oil mobility[J]. Acta Petrolei Sinica, 2010, 31(3): 480-485. | |
70 | KUMAR S, MAHTO V. Emulsification of Indian heavy crude oil in water for its efficient transportation through offshore pipelines[J]. Chemical Engineering Research and Design, 2016, 115: 34-43. |
71 | SANTOS R, BANNWART A, LOH W. Phase segregation, shear thinning and rheological behavior of crude oil-in-water emulsions[J]. Chemical Engineering Research and Design, 2014, 92: 1629-1636 |
72 | 王卫强, 崔静, 吴尚书, 等. 石油烃降解菌Pseudomonas sp. 及其生物表面活性剂对原油处理效果分析[J]. 石油学报(石油加工), 2020, 36(5): 1039-1046. |
WANG W Q, CUI J, WU S S, et al. Effect of petroleum hydrocarbon decomposing bacteria Pseudomonas sp. and itsbiosurfactants on crude oil treatment[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(5): 1039-1046. | |
73 | JING J Q, SUN J, TAN J T, et al. Investigation on flow patterns and pressure drops of highly viscous crude oil-water flows in a horizontal pipe[J]. Experimental Thermal and Fluid Science, 2016, 72: 88-96. |
74 | 敬加强, 齐红媛, 梁爱国, 等. 管道表面润湿性对层流流动阻力的影响[J]. 化工进展, 2017, 36(9): 3203-3209. |
JING J Q, QI H Y, LIANG A G, et al. Experimental research on the effect of pipe surface wettability on flow resistance in laminar flow[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3203-3209. | |
75 | 齐红媛, 梁爱国, 蒋华义, 等. 水预润湿对液体管道流动阻力特性的影响[J]. 石油化工, 2019, 48(1): 36-41. |
QI H Y, LIANG A G, JIANG H Y, et al. Effect of water prewetting on flow resistance property in liquid pipe[J]. Petrochemical Technology, 2019, 48(1): 36-41. | |
76 | 许道振, 张劲军, 王彬, 等. 预润湿对管道润湿性的影响[J]. 西南石油大学学报(自然科学版), 2016, 38(6): 147-151. |
XU D Z, ZHANG J J, WANG B, et al. Effect of pre-wetting on pipeline wettability[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(6) 147-151. | |
77 | ZHANG J, CHEN X P, ZHANG D, et al. Rheological behavior and viscosity reduction of heavy crude oil and its blends from the Sui-zhong oilfield in China[J]. Journal of Petroleum Science and Engineering, 2017, 156: 563-574. |
78 | ZHANG J, XU J Y. Rheological behaviour of oil and water emulsions and their flow characterization in horizontal pipes[J]. The Canadian Journal of Chemical Engineering, 2016, 94: 324-331. |
79 | 齐红媛. 液体管道内壁润湿性及流动特性研究[D]. 成都: 西南石油大学, 2017. |
QI H Y. Study on inner wall wettability and flow property in liquid pipe[D]. Chengdu: Southwest Petroleum University, 2017. | |
80 | JING J Q, DU M J, YIN R, et al. Numerical study on two-phase flow characteristics of heavy oil-water ring transport boundary layer[J]. Journal of Petroleum Science and Engineering, 2020, 191: 107173. |
81 | 王炳捷, 李辉, 杨晓勇, 等. CFD数值模拟技术在液滴微流控多相流特性研究的应用进展[J]. 化工进展, 2021, 40(4): 1715-1735. |
WANG B J, LI H, YANG X Y, et al. Application process of CFD-numerical simulation technology for multiphase flow characteristics study in droplet-microfluidic systems[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1715-1735. |
[1] | Yuan LI,Qinfeng DI,Shuai HUA,Jingnan ZHANG,Feng YE,Wenchang WANG. Research progress of reservoirs wettability alteration by using nanofluids for enhancing oil recovery [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3612-3620. |
[2] | ZHANG Xiaohua, JIANG Yan, YUE Xiquan, ZHANG Xianming. Progress in the research of displacement of reservoir oil by biosurfactants [J]. Chemical Industry and Engineering Progree, 2016, 35(07): 2033-2040. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |