Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 301-310.DOI: 10.16085/j.issn.1000-6613.2020-0750
• Materials science and technology • Previous Articles Next Articles
KUAI Zihan1,2(), YAN Ting1,2(), WU Shaofei1,2, ZHOU Yuxiang1,2, PAN Weiguo1,2()
Received:
2020-05-06
Revised:
2020-12-28
Online:
2021-11-09
Published:
2021-10-25
Contact:
YAN Ting,PAN Weiguo
蒯子函1,2(), 闫霆1,2(), 吴韶飞1,2, 周宇翔1,2, 潘卫国1,2()
通讯作者:
闫霆,潘卫国
作者简介:
蒯子函(1996—),女,硕士研究生,研究方向为相变储热材料及系统。E-mail:基金资助:
CLC Number:
KUAI Zihan, YAN Ting, WU Shaofei, ZHOU Yuxiang, PAN Weiguo. Fabrication and heat storage properties of stearyl alcohol/expanded graphite composite phase change materials[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 301-310.
蒯子函, 闫霆, 吴韶飞, 周宇翔, 潘卫国. 硬脂醇/膨胀石墨复合相变材料的制备及储热性能[J]. 化工进展, 2021, 40(S1): 301-310.
预设密度 /kg ? m-3 | 实际密度/kg · m-3 | |||
---|---|---|---|---|
7% EG | 14% EG | 21% EG | 28% EG | |
700 | 698.36(A1) | 697.95(B1) | 695.83(C1) | 704.16(D1) |
800 | 796.18(A2) | 800.89(B2) | 799.78(C2) | 796.09(D2) |
900 | 898.20(A3) | 897.16(B3) | 899.89(C3) | 898.21(D3) |
1000 | 998.09(A4) | 999.53(B4) | 1000.03(C4) | 999.83(D4) |
预设密度 /kg ? m-3 | 实际密度/kg · m-3 | |||
---|---|---|---|---|
7% EG | 14% EG | 21% EG | 28% EG | |
700 | 698.36(A1) | 697.95(B1) | 695.83(C1) | 704.16(D1) |
800 | 796.18(A2) | 800.89(B2) | 799.78(C2) | 796.09(D2) |
900 | 898.20(A3) | 897.16(B3) | 899.89(C3) | 898.21(D3) |
1000 | 998.09(A4) | 999.53(B4) | 1000.03(C4) | 999.83(D4) |
PCM | 多孔支撑材料 | 制备方法 | 热导率/W ? m-1 ? K-1 | 潜热值/J ? g-1 | 参考文献 |
---|---|---|---|---|---|
硬脂醇+棕榈三压酸 | 10%(质量分数)石墨纳米板 | 混合加热搅拌 | 1.687 | ~158 | [ |
硬脂醇 | 28.6%(质量分数)高交联聚合物纳米碳球 | 真空熔融,搅拌吸附 | — | 134.1 | [ |
硬脂醇 | 膨胀珍珠石 | 真空浸渍法 | 6.623 | 140.2 | [ |
硬脂醇 | 25%(质量分数)多孔聚合物 | 浸渍法 | — | 169.2 | [ |
硬脂醇 | 聚乙烯+膨胀石墨 | 熔融吸附搅拌 | 0.6698 | 约200 | [ |
硬脂醇 | 2%(质量分数)石墨烯 | 熔融混合,自组装法 | 0.37 | 202.8 | [ |
硬脂醇 | 28%(质量分数)膨胀石墨 | 吸附定形 | 28.58 | 181.48 | 本工作 |
PCM | 多孔支撑材料 | 制备方法 | 热导率/W ? m-1 ? K-1 | 潜热值/J ? g-1 | 参考文献 |
---|---|---|---|---|---|
硬脂醇+棕榈三压酸 | 10%(质量分数)石墨纳米板 | 混合加热搅拌 | 1.687 | ~158 | [ |
硬脂醇 | 28.6%(质量分数)高交联聚合物纳米碳球 | 真空熔融,搅拌吸附 | — | 134.1 | [ |
硬脂醇 | 膨胀珍珠石 | 真空浸渍法 | 6.623 | 140.2 | [ |
硬脂醇 | 25%(质量分数)多孔聚合物 | 浸渍法 | — | 169.2 | [ |
硬脂醇 | 聚乙烯+膨胀石墨 | 熔融吸附搅拌 | 0.6698 | 约200 | [ |
硬脂醇 | 2%(质量分数)石墨烯 | 熔融混合,自组装法 | 0.37 | 202.8 | [ |
硬脂醇 | 28%(质量分数)膨胀石墨 | 吸附定形 | 28.58 | 181.48 | 本工作 |
样品 | 固态显热吸热 时间/min | 固-液潜热吸热 时间/min | 液态显热吸热 时间/min | 液态显热放热 时间/min | 固-液潜热放热 时间/min | 固态显热放热 时间/min |
---|---|---|---|---|---|---|
ρ=900kg ? m-3,7% EG | 43.5 | 56.5 | 37 | 9.5 | 34.5 | 44 |
ρ=900kg ? m-3 14% EG | 38 | 56 | 31.5 | 8.5 | 32.5 | 41.5 |
ρ=900kg ? m-3 21% EG | 33.5 | 55.2 | 21.5 | 9.5 | 30 | 40.5 |
ρ=900kg ? m-3,28% EG | 32.5 | 53 | 14 | 8 | 20 | 20.5 |
样品 | 固态显热吸热 时间/min | 固-液潜热吸热 时间/min | 液态显热吸热 时间/min | 液态显热放热 时间/min | 固-液潜热放热 时间/min | 固态显热放热 时间/min |
---|---|---|---|---|---|---|
ρ=900kg ? m-3,7% EG | 43.5 | 56.5 | 37 | 9.5 | 34.5 | 44 |
ρ=900kg ? m-3 14% EG | 38 | 56 | 31.5 | 8.5 | 32.5 | 41.5 |
ρ=900kg ? m-3 21% EG | 33.5 | 55.2 | 21.5 | 9.5 | 30 | 40.5 |
ρ=900kg ? m-3,28% EG | 32.5 | 53 | 14 | 8 | 20 | 20.5 |
1 | 谢标. 复合相变材料储能及热控的理论和实验研究[D]. 合肥: 中国科学技术大学, 2016. |
XIE B. Theoretical and experimental study on energy storage and thermal control of composite phase change materials[D]. Hefei: University of Science and Technology of China, 2016. | |
2 | FARAJ K, KHALED M, FARAJ J, et al. Phase change material thermal energy storage systems for cooling applications in buildings: a review[J]. Renewable and Sustainable Energy Reviews, 2020,119: 109579. |
3 | LAMIDI R O, JIANG L, PATHARE P B, et al. Recent advances in sustainable drying of agricultural produce: a review[J]. Applied Energy, 2019, 233/234: 367-385. |
4 | SHENG N, RAO Z, ZHU C, et al. Enhanced thermal performance of phase change material stabilized with textile-structured carbon scaffolds [J]. Solar Energy Materials and Solar Cells, 2020, 205: 110241. |
5 | WENG Y C, CHO P H, CHANG C C, et al. Heat pipe with PCM for electronic cooling[J]. Applied Energy, 2011, 88: 1825-1833. |
6 | BEHI H, GHANBARPOUR M, BEHI M. Investigation of PCM-assisted heat pipe for electronic cooling[J]. Applied Thermal Engineering, 2017, 127: 1132-1142. |
7 | 郭启霖. 膨胀石墨/赤藓糖醇相变复合材料的制备与热性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. |
GUO Q L. Preparation and thermal properties of expanded graphite/erythritol phase change composite[D]. Harbin: Harbin Institute of Technology, 2015. | |
8 | 于海涛. 硬脂酸/膨胀石墨相变储热材料的制备与应用[D]. 北京: 北京林业大学, 2016. |
YU H T. Preparation and application of stearic acid/expanded graphite phase change heat Storage material [D]. Beijing: Beijing Forestry University, 2016. | |
9 | 赵义清. 定形相变材料的制备及其定形效果的研究[D]. 上海: 复旦大学, 2011. |
ZHAO Y Q. Study on the preparation and shaping effect of shaped phase change materials [D]. Shanghai: Fudan University, 2011. | |
10 | 满亚辉. 相变潜热机制及其应用技术研究[D]. 长沙: 国防科学技术大学, 2010. |
MAN Y H. Study on latent heat mechanism of phase change and its application technology[D]. Changsha: National University of Defense Science and Technology, 2010. | |
11 | QIAN T, LI J, MIN X, et al. Radial-like mesoporous silica sphere: a promising new candidate of supporting material for storage of low-, middle-, and high-temperature heat[J]. Energy, 2016, 112: 1074-1083. |
12 | JI R, WEI S, XIA Y, et al. Enhanced thermal performance of form-stable composite phase-change materials supported by novel porous carbon spheres for thermal energy storage[J]. Journal of Energy Storage, 2020, 27: 101134. |
13 | WANG J, HUANG X, GAO H, et al. Construction of CNT@Cr-MIL-101-NH2 hybrid composite for shape-stabilized phase change materials with enhanced thermal conductivity[J]. Applied Thermal Engineering, 2018, 350: 164-172. |
14 | FENG D, FENG Y, QIU L, et al. Review on nanoporous composite phase change materials: fabrication, characterization, enhancement and molecular simulation[J]. Renewable and Sustainable Energy Reviews, 2019, 109:578-605. |
15 | JIN M Y, LIN Y, LIAO Y, et al. Development of highly-efficient ZIF-8@PDMS/PVDF nano-fibrous composite membrane for phenol removal in aqueous-aqueous membrane extractive process[J]. Journal of Membrane Science, 2018, 568: 121-133. |
16 | NUNTANG S, YOUSATIT S, YOKOI T, et al. Tunable mesoporosity and hydrophobicity of natural rubber/hexagonal mesoporous silica nano-composites[J]. Microporous and Mesoporous Materials, 2019, 275:235-224. |
17 | CHEN G, SHI T, ZHANG X, et al. Polyacrylonitrile/polyethylene glycol phase-change material fibres prepared with hybrid polymer blends and nano-SiC fillers via centrifugal spinning[J]. Polymer, 2019, 186: 122012. |
18 | 张飞, 陶则超, 郭全贵. 压缩膨胀石墨/石蜡相变复合材料微观结构与强化传热研究[J]. 化工新型材料, 2016, 44(6): 135-137. |
ZHANG Fei, TAO Zechao, GUO Quangui. Microstructure and enhanced heat transfer of compression expanded graphite/paraffin phase change composite[J]. New Chemical Materials, 2016, 44(6): 135-137. | |
19 | WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: a review[J]. Energy Storage Materials, 2020, 25:251-295. |
20 | WU S, LI T, TONG Z, et al. High performance thermally conductive phase change composites by large size oriented graphite sheets for scalable thermal energy harvesting[J]. Advanced Materials, 2019,31(49): 1905099. |
21 | ZHAO Y, JIN L, ZOU B, et al. Expanded graphite-paraffin composite phase change materials: effect of particle size on the composite structure and properties[J]. Applied Thermal Engineering, 2020, 171: 115015. |
22 | ZHANG S, WU W, WANG S, et al. Experimental investigations of alum/expanded graphite composite phase change material for thermal energy storage and its compatibility with metals[J]. Energy, 2018, 161: 508-516. |
23 | TANG J, YANG M, YU F, et al. 1-octadecanol@hierarchical porous polymer composite as a novel shape-stability phase changematerial for latent heat thermal energy storage[J]. Applied Energy, 2017, 187: 514-522. |
24 | 刘孟然, 王攀, 李建立, 等. 膨胀石墨基定型相变材料研究进展[J]. 化工新型材料, 2018, 46(12): 6-10. |
LIU Mengran, WANG Pan, LI Jianli, et al. Research progress of expanded graphite based phase change materials[J]. New Chemical Materials, 2018, 46(12): 6-10. | |
25 | 殷淑霞, 王琛, 雷圣宾, 等. 十八醇在石墨表面吸附组装结构的理论研究[J]. 电子显微学报, 2001, 20(5): 565-568. |
YIN Shuxia, WANG Chen, LEI Shengbin, et al. Theoretical study on the adsorption and assembly structure of n-octadecanol on graphite surface[J]. Journal of Chinese Electron Microscopy Society, 2001, 20(5): 565-568. | |
26 | 吴韶飞, 闫霆, 蒯子函,等. 高导热膨胀石墨/棕榈酸定形复合相变材料的制备及储热性能研究[J]. 化工学报, 2019,70(9): 3553-3564, 3207. |
WU Shaofei, YAN Ting, KUAI Zihan, et al. Study on the preparation and thermal storage properties of high thermal conductivity expanded graphite/palmitic acid form-stable composite phase change materials[J]. CIESC Journal, 2019, 70(9): 3553-3564, 3207. | |
27 | 翟天尧, 李廷贤, 仵斯, 等. 高导热膨胀石墨/硬脂酸定形相变储能复合材料的制备及储/放热特性[J]. 科学通报, 2018, 63(7): 674-683. |
ZHAI Tianyao, LI Tingxian, WU Si, et al. Preparation and heat storage/release characteristics of high thermal conductivity expanded graphite/stearic acid shaped phase change energy storage composite[J]. Chinese Science Bulletin, 2018, 63(7): 674-683. | |
28 | KE H. Investigation of the effects of nano-graphite on morphological structure and thermal performances of fatty acid ternary eutectics/polyacrylonitrile/nano-graphite form-stable phase change composite fibrous membranes for thermal energy storage[J]. Solar Energy, 2018, 173: 1197-1206. |
29 | 王涛. 环氧树脂包覆二十烷/膨胀石墨相变复合材料的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
WANG T. Preparation and properties of eicosane/expanded graphite phase change composite coated with epoxy resin[D]. Harbin: Harbin Institute of Technology, 2019. | |
30 | MHIKE W, FOCKE W W, MACKENZIE J, et al. Stearyl alcohol/palm triple pressed acid-graphite nanocomposites as phase change materials[J]. Thermochim Acta, 2018, 663: 77-84. |
31 | FU X, LIU Y, JIANG X, et al. Form-stable phase change nanocomposites for thermal energy storage based on hyper-crosslinked polymer nanospheres[J]. Thermochim Acta, 2018, 665: 111-118. |
32 | LV P, DING M, LIU C, et al. Experimental investigation on thermal properties and thermal performance enhancement of cctadecanol/expanded perlite form stable phase change materials for efficient thermal energy storage[J]. Renewable Energy, 2019, 131: 911-922. |
33 | TANG Y, LIN Y, JIA Y, et al. Improved thermal properties of stearyl alcohol/high density polyethylene/expanded graphite composite phase change materials for building thermal energy storage[J]. Energy Buildings, 2017, 153: 41-49. |
34 | 袁维烨, 章学来, 华维三, 等. 膨胀石墨/三水乙酸钠复合相变材料储热的性能[J]. 化工进展, 2018, 37(11): 4405-4411. |
YUAN Weiye, ZHANG Xuelai, HUA Weisan, et al. Thermal storage performance of sodium acetate trihydrate/expanded graphite composite phase change material[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4405-4411. | |
35 | 顾庆军, 费华, 王林雅, 等. 癸酸-十六醇作为相变储能材料的相变特性[J]. 化工进展, 2019, 38(11):5033-5039. |
GU Qingjun, FEI Hua, WANG Linya, et al. Phase transition properties of capric acid-hexadecanol as phase change energy storage material[J]. Chemical Industry and Engineering Progress, 2019, 38(11):5033-5039. | |
36 | 李传常, 李琦, 姜竹, 等. 碳酸锂钠共晶盐复合相变材料的储放热特性[J]. 储能科学与技术, 2017(6):655-661. |
LI Chuanchang, LI Qi, JIANG Zhu, et al. Energy storage science and technology of lithium sodium carbonate eutectic composite phase change materials[J]. Energy Storage Science and Technology, 2017(6): 655-661. | |
37 | 孙婉纯, 冯锦新, 张正国, 等,相变储热技术用于被动式建筑节能的研究进展[J]. 化工进展, 2020, 39(5):1824-1834. |
SUN Wanchun, FENG Jinxin, ZHANG Zhengguo, et al. Research progress of phase change heat storage technology for passive energy conservation in buildings[J]. Chemical Industry and Engineering Progress, 2020, 39(5):1824-1834. |
[1] | YANG Yukai, XIA Yongpeng, XU Fen, SUN Lixian, GUAN Yanxun, LIAO Lumin, LI Yaying, ZHOU Tianhao, LAO Jianhao, WANG Yu, WANG Yingjing. Research progress of erythritol phase change materials for thermal storage [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4357-4366. |
[2] | ZHOU Taotao, XIONG Zhibo, WU Zhigen, LI Shang. Characters of electric resistance and heating of expanded graphite/paraffin composite phase change materials [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 892-900. |
[3] | MA Mingyan, ZHAI Yuling, XUAN Zihao, ZHOU Shuguang, LI Zhixiang. Stability and thermal performance of ternary hybrid nanofluids [J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4179-4186. |
[4] | ZHANG Runxia, GU Zhaolin, WANG Zanshe, KANG Yanqing, BAI Mengmeng. Preparation and characterization of phase change materials for air energy storage [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3892-3899. |
[5] | XU Zhong, HOU Jing, WU Enhui, LI Jun, HUANG Ping, TANG Yalan. Effect of graphite on latent heat and conductivity of activated carbon/fatty acid composite phase change materials [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3878-3891. |
[6] | Nan YU, Chao CHEN, Jie LIN, Fengtao HAN, Ping ZOU, Yipeng HE, Qingling HU. Thermal properties of phase change materials used in buildings for solar- phase change thermal storage curing of precast concrete components [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 297-304. |
[7] | Ye WANG, Chengzhi SHI, Zhendong SUN, Teng HE, Haochen ZHAO. Comprehensive effect of fluid parameters and obstacle structure on performance of solar energy storage tank [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 77-84. |
[8] | Zhong XU, Jing HOU, Jun LI, Enhui WU, Ping HUANG, Qianshu LIU, Dawei XU. Preparation and performances of expanded graphite/organic matter composite phase change materials [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2758-2767. |
[9] | Xiaohua LI,Zichun YANG,Kunfeng LI,Shuang ZHAO,Zhifang FEI,Zhen ZHANG. Preparation and characterization of transparent and compressible methylsilsesquioxane aerogels using MTES as precursor [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1115-1121. |
[10] | Xiang WANG,Xuelai ZHANG,Weisan HUA,Lingyu ZHENG,Lu LIU,Caimei YU. Preparation and thermal properties of Na2HPO4·12H2O composite phase change material for thermal energy storage [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5457-5464. |
[11] | Yuling ZHAI,Jiang WANG,Long LI,Mingyan MA,Peitao YAO. Evaluation and effect of mixture ratio on heat transfer performance of Al2O3/water nanofluids [J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4865-4872. |
[12] | Qiuhui YAN, Xiaoyang SUN, Jieren LUO, Zhiju WU, Cong ZHOU. Experimental study on improving the performance of rock wool and glass wool by silica aerogel [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2847-2853. |
[13] | Qingjun GU, Hua FEI, Linya WANG, Min FANG, Dahua JIANG. Research progress on thermal properties of fatty acid phase change energy storage materials [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2825-2834. |
[14] | Gang WANG, Yaohua ZHAO, Zhenhua QUAN, Hongyan WANG. Characteristic of flat plate heat pipe with different filling ratios [J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2123-2131. |
[15] | Shaowu YIN,Hongkun LI,Li WANG,Lige TONG,Chuanping LIU. Characteristics and analysis of 80# paraffin/expanded graphite composite phase change material [J]. Chemical Industry and Engineering Progress, 2019, 38(03): 1494-1500. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1094
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 303
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |