Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 191-203.DOI: 10.16085/j.issn.1000-6613.2021-0337
• Industrial catalysis • Previous Articles Next Articles
DAI Xiaojun(), CHENG Yan, WANG Xiaohan, HUANG Wenbin, WEI Qiang(), ZHOU Yasong
Received:
2021-02-19
Revised:
2021-05-31
Online:
2021-11-09
Published:
2021-10-25
Contact:
WEI Qiang
代校军(), 成艳, 王晓晗, 黄文斌, 魏强(), 周亚松
通讯作者:
魏强
作者简介:
代校军(1995—),男,硕士研究生,研究方向为石油与天然气化学。E-mail:基金资助:
CLC Number:
DAI Xiaojun, CHENG Yan, WANG Xiaohan, HUANG Wenbin, WEI Qiang, ZHOU Yasong. Research progress in the synthesis of small particle-size SAPO-11 molecular sieves[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 191-203.
代校军, 成艳, 王晓晗, 黄文斌, 魏强, 周亚松. 小粒径SAPO-11分子筛合成的研究进展[J]. 化工进展, 2021, 40(S1): 191-203.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0337
1 | PENG C, LIU B, FENG X, et al. Engineering dual bed hydrocracking catalyst towards enhanced high-octane gasoline generation from light cycle oil[J]. Chemical Engineering Journal, 2020, 389: 123461. |
2 | 黄卫国, 方文秀, 康小洪. 正十六烷在Pt/SAPO-11上的临氢异构反应[J]. 石油化工, 2019, 48(8): 782-786. |
HUANG Weiguo, FANG Wenxiu, KANG Xiaohong. Hydroisomerization of n-hexadecane on Pt/SAPO-11 catalyst[J]. Petrochemical Technology, 2019, 48(8): 782-786. | |
3 | SHAMANAEVA (TIULIUKOVA) I A, PARKHOMCHUK E V. Influence of the precursor preparation procedure on the physicochemical properties of silicoaluminophosphate SAPO-11[J]. Petroleum Chemistry, 2019, 59(8): 854-859. |
4 | YU G, QIU M H, WANG T, et al. Optimization of the pore structure and acidity of SAPO-11 for highly efficient hydroisomerization on the long-chain alkane[J]. Microporous and Mesoporous Materials, 2021, 320: 111076. |
5 | WEN C L, HAN S L, XU J D, et al. A novel route to synthesize SAPO-11 molecular sieves with a high external surface area in the presence of ethylene glycol and supercritical carbon dioxide for 1-octene hydroisomerization to dimethylhexanes[J]. Journal of Catalysis, 2017, 356: 100-110. |
6 | TAO S, LI X L, LYU G, et al. Highly mesoporous SAPO-11 molecular sieves with tunable acidity: facile synthesis, formation mechanism and catalytic performance in hydroisomerization of n-dodecane[J]. Catalysis Science & Technology, 2017, 7(23): 5775-5784. |
7 | 杨妮, 彭礼波, 欧阳仟, 等. 多级孔SAPO-11的制备及其临氢异构性能[J]. 石油化工, 2018, 47(12): 1318-1325. |
YANG Ni, PENG Libo, OUYANG Qian, et al. Synthesis of hierarchical SAPO-11 and catalytic performance thereof in hydroisomerization[J]. Petrochemical Technology, 2018, 47(12): 1318-1325. | |
8 | CHEN Z, DONG Y Y, JIANG S Y, et al. Low-temperature synthesis of hierarchical architectures of SAPO-11 zeolite as a good hydroisomerization support[J]. Journal of Materials Science, 2017, 52(8): 4460-4471. |
9 | 崔楼伟, 何观伟, 顾建峰, 等. 小晶粒SAPO-11分子筛合成及其正己烷异构化催化性能[J]. 工业催化, 2018, 26(9): 35-40. |
CUI Louwei, HE Guanwei, GU Jianfeng, et al. Synthesis of small crystal SAPO-11 molecular sieve and its catalytic activity for n-hexane hydroisomerization[J]. Industrial Catalysis, 2018, 26(9): 35-40. | |
10 | GUO L, FAN Y, BAO X J, et al. Two-stage surfactant-assisted crystallization for enhancing SAPO-11 acidity to improve n-octane di-branched isomerization[J]. Journal of Catalysis, 2013, 301: 162-173. |
11 | ZHANG S Z, CHEN S L, DONG P, et al. Synthesis, characterization and hydroisomerization catalytic performance of nanosize SAPO-11 molecular sieves[J]. Catalysis Letters, 2007, 118(1/2): 109-117. |
12 | BÉRTOLO R, SILVA J M, RIBEIRO F, et al. Effects of oxidant acid treatments on carbon-templated hierarchical SAPO-11 materials: synthesis, characterization and catalytic evaluation in n-decane hydroisomerization[J]. Applied Catalysis A: General, 2014, 485: 230-237. |
13 | YADAV R, SAKTHIVEL A. Silicoaluminophosphate molecular sieves as potential catalysts for hydroisomerization of alkanes and alkenes[J]. Applied Catalysis A: General, 2014, 481: 143-160. |
14 | LIU P, REN J, SUN Y H. Acidity and isomerization activity of SAPO-11 synthesized by an improved hydrothermal method[J]. Chinese Journal of Catalysis, 2008, 29(4): 379-384. |
15 | ZHANG Q, MAYORAL A, TERASAKI O, et al. Amino acid-assisted construction of single-crystalline hierarchical nanozeolites via oriented-aggregation and intraparticle ripening[J]. Journal of the American Chemical Society, 2019, 141(9): 3772-3776. |
16 | ZHANG Q, CHEN G R, WANG Y R, et al. High-quality single-crystalline MFI-type nanozeolites: a facile synthetic strategy and MTP catalytic studies[J]. Chemistry of Materials, 2018, 30(80): 2750-2758. |
17 | 张胜振, 陈胜利, 董鹏, 等. 小晶粒SAPO-11分子筛的合成及其催化异构化性能[J]. 催化学报, 2007, 28(10): 857-864. |
ZHANG Shengzhen, CHEN Shengli, DONG Peng, et al. Synthesis and catalytic hydroisomerization performance of SAPO-11 molecular sieve with small crystals[J]. Chinese Journal of Catalysis, 2007, 28(10): 857-864. | |
18 | TAO S, LI X L, WANG X G, et al. Facile synthesis of hierarchical nanosized single-crystal aluminophosphate molecular sieves from highly homogeneous and concentrated precursors[J]. Angewandte Chemie International Edition, 2020, 59(9): 3455-3459. |
19 | REN L M, WU Q M, YANG C G, et al. Solvent-free synthesis of zeolites from solid raw materials[J]. Journal of the American Chemical Society, 2012, 134(37): 15173-15176. |
20 | IYOKI K, ITABASHI K, OKUBO T. Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents[J]. Microporous and Mesoporous Materials, 2014, 189: 22-30. |
21 | YU G, CHEN X Q, XUE W J, et al. Melting-assisted solvent-free synthesis of SAPO-11 for improving the hydroisomerization performance of n-dodecane[J]. Chinese Journal of Catalysis, 2020, 41(4): 622-630. |
22 | 孙兵, 肖霞, 许中亮, 等. 绿色合成分子筛的研究进展[J]. 工业催化, 2020, 28(3): 1-10. |
SUN Bing, XIAO Xia, XU Zhongliang, et al. Advances in the green synthesis of molecular sieves[J]. Industrial Catalysis, 2020, 28(3): 1-10. | |
23 | 赵新红, 郝志鑫, 张晓晓, 等. 改进的无溶剂法制备FeAPO-11分子筛及其催化性能[J]. 石油学报(石油加工), 2019, 35(1): 166-175. |
ZHAO Xinhong, HAO Zhixin, ZHANG Xiaoxiao, et al. Preparation of FeAPO-11 molecular sieves via improved solvent-free method and their catalytic performances[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(1): 166-175. | |
24 | DU Y Y, FENG B, JIANG Y, et al. Solvent-free synthesis and n-hexadecane hydroisomerization performance of SAPO-11 catalyst[J]. European Journal of Inorganic Chemistry, 2018, 2018(22): 2599-2606. |
25 | LIU S Y, CHAO Z S. Synthesis of mesoporous chromium aluminophosphate (CrAlPO) via solid state reaction at low temperature[J]. Journal of Wuhan University of Technology(Mater. Sci. Ed.), 2012, 27(2): 337-345. |
26 | JIN Y Y, CHEN X, SUN Q, et al. Solvent-free syntheses of hierarchically porous aluminophosphate-based zeolites with AEL and AFI structures[J]. Chemistry—A European Journal, 2014, 20(52): 17616-17623. |
27 | YU G, CHEN X Q, XUE W J, et al. Melting-assisted solvent-free synthesis of SAPO-11 for improving the hydroisomerization performance of n-dodecane[J]. Chinese Journal of Catalysis, 2020, 41(4): 622-630. |
28 | ZHAO X H, ZHANG X X, HAO Z X, et al. Synthesis of FeAPO-5 molecular sieves with high iron contents via improved ionothermal method and their catalytic performances in phenol hydroxylation[J]. Journal of Porous Materials, 2018, 25(4): 1007-1016. |
29 | LI B, TIAN P, QI Y, et al. Study of crystallization process of SAPO-11 molecular sieve[J]. Chinese Journal of Catalysis, 2013, 34(3): 593-603. |
30 | 王大康, 罗明检. 无溶剂法合成分子筛的研究进展[J]. 化工科技, 2017, 25(4): 70-75. |
WANG Dakang, LUO Mingjian. Synthesis of zeolites by solvent-free method[J]. Science & Technology in Chemical Industry, 2017, 25(4): 70-75. | |
31 | LI M, WANG Y H, BAI L, et al. Solvent-free synthesis of SAPO-34 nanocrystals with reduced template consumption for methanol-to-olefins process[J]. Applied Catalysis A: General, 2017, 531: 203-211. |
32 | SEYED HASSAN S P, MAJID T. Ultrasonic and microwave pretreatment for hydrothermal synthesis of nanosized SAPO-34s and their catalytic performance in MTO reaction[J]. International Journal of Engineering, 2015, 28(3): 330-337. . |
33 | LIU Y X, ZHENG D J, LI B H, et al. Isomerization of α-pinene with a hierarchical mordenite molecular sieve prepared by the microwave assisted alkaline treatment[J]. Microporous and Mesoporous Materials, 2020, 299: 110117. |
34 | 罗小林, 陈亚芍, 常鹏梅, 等. 离子胶束诱导微波合成SAPO-11分子筛微球[J]. 物理化学学报, 2009, 25(1): 137-144. |
LUO Xiaolin, CHEN Yashao, CHANG Pengmei, et al. Synthesis of SAPO-11 molecular sieve microspheres using a microwave technique and mediated by ionic micelles[J]. Acta Physico-Chimica Sinica, 2009, 25(1): 137-144. | |
35 | BÉRTOLO R, SILVA J M, RIBEIRO M F, et al. Microwave synthesis of SAPO-11 materials for long chain n-alkanes hydroisomerization: effect of physical parameters and chemical gel composition[J]. Applied Catalysis A: General, 2017, 542: 28-37. |
36 | GHARIBEH M, TOMPSETT G A, CONNER W C, et al. Microwave synthesis of SAPO-11 and AlPO-11: aspects of reactor engineering[J]. ChemPhysChem, 2008, 9(17): 2580-2591. |
37 | 张燕, 李湘祁, 汤德平. 微波法合成有序介孔分子筛的研究进展[J]. 化工时刊, 2007, 21(11): 71-75. |
ZHANG Yan, LI Xiangqi, TANG Deping. Advances in the microwave synthesis of ordered mesoporous material[J]. Chemical Industry Times, 2007, 21(11): 71-75. | |
38 | 崔岩, 郭成玉, 王晓化, 等. 微波技术在沸石分子筛材料合成中的应用研究进展[J]. 工业催化, 2016, 24(3): 1-9. |
CUI Yan, GUO Chengyu, WANG Xiaohua, et al. Advance in microwave synthesis of zeolite materials[J]. Industrial Catalysis, 2016, 24(3): 1-9. | |
39 | CHEN B H, HUANG Y N.17O solid-state NMR spectroscopic studies of the involvement of water vapor in molecular sieve formation by dry-gel conversion[J]. Journal of the American Chemical Society, 2006, 128(19): 6437-6446. |
40 | 李浩, 王海彦, 孙娜, 等. 干凝胶法合成多级孔SAPO-11分子筛及其异构化性能[J]. 辽宁石油化工大学学报, 2018, 38(5): 9-13, 18. |
LI Hao, WANG Haiyan, SUN Na, et al. Synthesis of multistage pore SAPO-11 molecular sieve by dry gel method and its isomerization performance[J]. Journal of Liaoning Shihua University, 2018, 38(5): 9-13, 18. | |
41 | LIU Y X, ZHENG D J, YU H, et al. Rapid and green synthesis of SAPO-11 for deoxygenation of stearic acid to produce bio-diesel fractions[J]. Microporous and Mesoporous Materials, 2020, 303: 110280. |
42 | SONG C M, FENG Y, MA L L. Characterization and hydroisomerization performance of SAPO-11 molecular sieves synthesized by dry gel conversion[J]. Microporous and Mesoporous Materials, 2012, 147(1): 205-211. |
43 | GRENEV I V, GAVRILOV V Y. Silicon distribution in SAPO-11 molecular sieves: simulation and experimental adsorption study[J]. Microporous and Mesoporous Materials, 2020, 294: 109906. |
44 | LIU Y X, CUI X, HAN L, et al. Role of fluoride ions in synthesis and isomerization performance of superfine SAPO-11 zeolite[J]. Microporous and Mesoporous Materials, 2014, 198: 230-235. |
45 | YUAN Z S, CHENG Y C, MA S T, et al. Instant exactness synthesis and n-heptane hydroisomerization of high performance Ni/SAPO-11 catalyst[J]. Journal of Porous Materials, 2020, 27(5): 1455-1466. |
46 | HAN L, LIU Y X, SUBHAN F, et al. Particle effect of SAPO-11 promoter on isomerization reaction in FCC units[J]. Microporous and Mesoporous Materials, 2014, 194: 90-96. |
47 | TAO S, LI X L, GONG H M, et al. Confined-space synthesis of hierarchical MgAPO-11 molecular sieves with good hydroisomerization performance[J]. Microporous and Mesoporous Materials, 2018, 262: 182-190. |
48 | GRIFFE B, BRITO J L, SIERRAALTA A. Comparative theoretical study of Au1-3 and Cu1-3 clusters supported on SAPO-11 and their interactions with CO[J]. Journal of Computational Methods in Sciences and Engineering, 2017, 17(1): 89-96. |
49 | 刘艳惠, 任行涛, 杨光, 等. 不同晶化方式对SAPO-11分子筛的物化性质的影响[J]. 现代化工, 2014, 34(5): 100-102. |
LIU Yanhui, REN Xingtao, YANG Guang, et al. Effect of different crystallization ways on physical and chemical properties of SAPO-11[J]. Modern Chemical Industry, 2014, 34(5): 100-102. | |
50 | JIN D L, LI L Y, YE G H, et al. Manipulating the mesostructure of silicoaluminophosphate SAPO-11 via tumbling-assisted, oriented assembly crystallization: a pathway to enhance selectivity in hydroisomerization[J]. Catalysis Science & Technology, 2018, 8(19): 5044-5061. |
51 | CHEN Z, LI X Y, XU Y R, et al. Fabrication of nano-sized SAPO-11 crystals with enhanced dehydration of methanol to dimethyl ether[J]. Catalysis Communications, 2018, 103: 1-4. |
52 | LIU Y X, LIU W R, LYU Y C, et al. Intra-crystalline mesoporous SAPO-11 prepared by a grinding synthesis method as FCC promoters to increase iso-paraffin of gasoline[J]. Microporous and Mesoporous Materials, 2020, 305: 110320. |
53 | 肖寒, 于海斌, 刘红光, 等. 晶种硅烷化合成小粒径SAPO-11分子筛表征及其临氢异构化催化性能评价[J]. 石油炼制与化工, 2014, 45(1): 28-34. |
XIAO Han, YU Haibin, LIU Hongguang, et al. Hydroisomerization performance of small size SAPO-11 molecular sieve synthesized by silylanization of seed crystal[J]. Petroleum Processing and Petrochemicals, 2014, 45(1): 28-34. | |
54 | 吴海琳, 王海彦, 孙娜, 等. 醇-水体系SAPO-11分子筛的合成及其异构化性能[J]. 现代化工, 2019, 39(3): 87-90, 92. |
WU Hailin, WANG Haiyan, SUN Na, et al. Synthesis of SAPO-11 molecular sieve in alcohol-water system and its isomerization performance[J]. Modern Chemical Industry, 2019, 39(3): 87-90, 92. | |
55 | ZHANG S Z, CHEN S L, DONG P, et al. Characterization and hydroisomerization performance of SAPO-11 molecular sieves synthesized in different media[J]. Applied Catalysis A: General, 2007, 332(1): 46-55. |
56 | LIU Q Y, ZUO H L, WANG T J, et al. One-step hydrodeoxygenation of palm oil to isomerized hydrocarbon fuels over Ni supported on nano-sized SAPO-11 catalysts[J]. Applied Catalysis A: General, 2013, 468: 68-74. |
57 | JHA R, MODHERA B. Thermal gravimetric analysis study of silicoaluminophosphate synthesized from non-aqueous media for solar energy storage material[J]. Materials Today: Proceedings, 2017, 4(2): 774-778. |
58 | SHENG N, MA Y, ZHU Q W, et al. Synthesis of aluminophosphate molecular sieves in alkaline media[J]. Chemistry-A European Journal, 2020, 26(50): 11408-11411. |
59 | 张胜振, 陈胜利, 董鹏, 等. 含HF体系中SAPO-11分子筛的合成与表征[J]. 催化学报, 2006, 27(10): 868-874. |
ZHANG Shengzhen, CHEN Shengli, DONG Peng, et al. Synthesis and characterization of SAPO-11 molecular sieve in the presence of fluoride ions[J]. Chinese Journal of Catalysis, 2006, 27(10): 868-874. | |
60 | TIULIUKOVA I A, RUDINA N A, LYSIKOV A I, et al. Screw-like morphology of silicoaluminophosphate-11 (SAPO-11) crystallized in ethanol medium[J]. Materials Letters, 2018, 228: 61-64. |
61 | LIU Z, LIU L J, SONG H, et al. Hierarchical SAPO-11 preparation in the presence of glucose[J]. Materials Letters, 2015, 154: 116-119. |
62 | CHOI M, SRIVASTAVA R, RYOO R. Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks[J]. Chemical Communications, 2006(42): 4380. |
63 | GUO L, BAO X J, FAN Y, et al. Impact of cationic surfactant chain length during SAPO-11 molecular sieve synthesis on structure, acidity, and n-octane isomerization to di-methyl hexanes[J]. Journal of Catalysis, 2012, 294: 161-170. |
64 | ZHANG P, LIU H Y, YUE Y Y, et al. Direct synthesis of hierarchical SAPO-11 molecular sieve with enhanced hydroisomerization performance[J]. Fuel Processing Technology, 2018, 179: 72-85. |
65 | YANG L M, LI H W, FU J Y, et al. Synthesis of a novel nano-rod-shaped hierarchical silicoaluminophosphate SAPO-11 molecular sieve with enhanced hydroisomerization of oleic acid to iso-alkanes[J]. RSC Advances, 2019, 9(59): 34457-34464. |
66 | BLASCO T, CHICA A, CORMA A, et al. Changing the Si distribution in SAPO-11 by synthesis with surfactants improves the hydroisomerization/dewaxing properties[J]. Journal of Catalysis, 2006, 242(1): 153-161. |
67 | ZHANG F, LIU Y, SUN Q, et al. Design and preparation of efficient hydroisomerization catalysts by the formation of stable SAPO-11 molecular sieve nanosheets with 10—20nm thickness and partially blocked acidic sites[J]. Chemical Communications, 2017, 53(36): 4942-4945. |
68 | 韩磊, 崔晓, 刘欣梅. SAPO-11分子筛的粒度调控[J]. 无机化学学报, 2013, 29(3): 565-570. |
HAN Lei, CUI Xiao, LIU Xinmei. Particle size control for SAPO-11 molecular sieves[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(3): 565-570. | |
69 | AGLIULLIN M R, KHAIRULLINA Z R, FAIZULLIN A V, et al. Selective crystallization of aluminophosphate molecular sieves with an AEL structure[J]. Catalysis in Industry, 2019, 11(1): 1-6. |
70 | 李山山, 王东军, 卜佳玉, 等. NiMo/SAPO-11加氢脱氧/异构双功能催化剂的制备及性能[J]. 石油化工, 2018, 47(6): 535-542. |
LI Shanshan, WANG Dongjun, BU Jiayu, et al. Preparation and performance of NiMo/SAPO-11 bifunctional catalyst for hydrodeoxygenation and isomerization[J]. Petrochemical Technology, 2018, 47(6): 535-542. | |
71 | XING G H, LIU S Y, GUAN Q X, et al. Investigation on hydroisomerization and hydrocracking of C15-C18n-alkanes utilizing a hollow tubular Ni-Mo/SAPO-11 catalyst with high selectivity of jet fuel[J]. Catalysis Today, 2019, 330: 109-116. |
72 | 吴海琳, 孙娜, 王海彦, 等. 陈化温度对导向剂法制备SAPO-11分子筛及异构化性能的影响[J]. 人工晶体学报, 2019, 48(2): 307-311. |
WU Hailin, SUN Na, WANG Haiyan, et al. Effect of aging temperatures on synthesis and isomerization properties of SAPO-11 molecular sieve[J]. Journal of Synthetic Crystals, 2019, 48(2): 307-311. | |
73 | LI L, SHEN K X, HUANG X, et al. SAPO-11 with preferential growth along the a-direction as an improved active catalyst in long-alkane isomerization reaction[J]. Microporous and Mesoporous Materials, 2021, 313: 110827. |
74 | LYU Y C, YU Z M, YANG Y, et al. Metal and acid sites instantaneously prepared over Ni/SAPO-11 bifunctional catalyst[J]. Journal of Catalysis, 2019, 374: 208-216. |
75 | AGLIULLIN M R, FAIZULLIN A V, KHAZIPOVA A N, et al. Synthesis of fine-crystalline SAPO-11 zeolites and analysis of their physicochemical and catalytic properties[J]. Kinetics and Catalysis, 2020, 61(4): 654-662. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[3] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[4] | XU Zhongshuo, ZHOU Panpan, WANG Yuhui, HUANG Wei, SONG Xinshan. Advances in sulfur iron ore mediated autotrophic denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4863-4871. |
[5] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[6] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[7] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[8] | WANG Shuaiqi, WANG Congxin, WANG Xuelin, TIAN Zhijian. Solvent-free rapid synthesis of ZSM-12 zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3561-3571. |
[9] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[10] | WANG Darui, SUN Hongmin, XUE Mingwei, WANG Yiyan, LIU Wei, YANG Weimin. Efficient synthesis of fully crystalline ZSM-5 zeolite catalyst by microwave method and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3582-3588. |
[11] | YU Xixi, ZHANG Jinshuai, LEI Wen, LIU Chengguo. Research progress of self-healing photocuring polymeric materials based on dynamic covalent bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3589-3599. |
[12] | WANG Zhicai, LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu. Synthesis and performance of a superplasticizer based on coal-based humic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3634-3642. |
[13] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
[14] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[15] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |