Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (9): 5195-5203.DOI: 10.16085/j.issn.1000-6613.2021-0245
Previous Articles Next Articles
FANG Shuqi1,2,3(), WANG Yuqian1,3, LI Pan1,2,3(), SONG Jiande2, BAI Jing1,2,3, CHANG Chun2,3
Received:
2021-02-01
Revised:
2021-06-07
Online:
2021-09-13
Published:
2021-09-05
Contact:
LI Pan
方书起1,2,3(), 王毓谦1,3, 李攀1,2,3(), 宋建德2, 白净1,2,3, 常春2,3
通讯作者:
李攀
作者简介:
方书起(1964—),男,教授,研究方向为生物质资源化利用。E-mail:基金资助:
CLC Number:
FANG Shuqi, WANG Yuqian, LI Pan, SONG Jiande, BAI Jing, CHANG Chun. Research progress of main catalyst in biomass pyrolysis and utilization[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5195-5203.
方书起, 王毓谦, 李攀, 宋建德, 白净, 常春. 生物质热解利用中主要催化剂的研究进展[J]. 化工进展, 2021, 40(9): 5195-5203.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0245
1 | 李明. 热解稻壳炭的高值化利用研究[D]. 合肥: 中国科学技术大学, 2016. |
LI Ming. Research of high-value utilization of pyrolyzed rice husk[D]. Hefei: University of Science and Technology of China, 2016. | |
2 | Energy Information Administration and United States (2019). International energy outlook[EB/OL]. . |
3 | 余智涵, 苏世伟. 生物质能源产业发展研究动态与展望[J]. 中国林业经济, 2019(3): 5-7, 12. |
YU Zhihan, SU Shiwei. Development trends and prospects of biomass energy industry[J]. China Forestry Economics, 2019(3): 5-7, 12. | |
4 | ELLABBAN O, ABU-RUB H, DE BLAABJERG F. Renewable energy resources: current status, future prospects and their enabling technology[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 748-764. |
5 | 胡二峰, 赵立欣, 吴娟, 等. 生物质热解影响因素及技术研究进展[J]. 农业工程学报, 2018, 34(14): 212-220. |
HU Erfeng, ZHAO Lixin, WU Juan, et al. Research advance on influence factors and technologies of biomass pyrolysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(14): 212-220. | |
6 | 骆仲泱, 王树荣, 王琦. 生物质液化原理及技术应用[M]. 北京: 化学工业出版社, 2013: 28-29. |
LUO Zhongyang, WANG Shurong, WANG Qi. Biomass utilization for liquid fuel production[M]. Beijing: Chemical Industry Press, 2013: 28-29. | |
7 | BRIDGWATER A V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy, 2012, 38: 68-94. |
8 | PARK H J, JEON J K, SUH D J, et al. Catalytic vapor cracking for improvement of bio-oil quality[J]. Catalysis Surveys from Asia, 2011, 15(3): 161-180. |
9 | XIU S N, SHAHBAZI A. Bio-oil production and upgrading research: a review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(7): 4406-4414. |
10 | 王树荣, 骆仲泱, 谭洪, 等. 生物质热裂解生物油特性的分析研究[J]. 工程热物理学报, 2004, 25(6): 1049-1052. |
WANG Shurong, LUO Zhongyang, TAN Hong, et al. The analyses of characteristics of bio-oil produced from biomass by flash pyrolysis[J]. Journal of Engineering Thermophysics, 2004, 25(6): 1049-1052. | |
11 | LIU C, WANG H, KARIM A M, et al. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical Society Reviews, 2014, 43(22): 7594-7623. |
12 | RAHMAN M M, LIU R H, CAI J M. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil: a review[J]. Fuel Processing Technology, 2018, 180: 32-46. |
13 | GALADIMA A, MURAZA O. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: a review[J]. Energy Conversion and Management, 2015, 105: 338-354. |
14 | WANG Y P, JIANG L, DAI L L, et al. Microwave-assisted catalytic co-pyrolysis of soybean straw and soapstock for bio-oil production using SiC ceramic foam catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 76-81. |
15 | MORGAN H M, BU Q, LIANG J H, et al. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals[J]. Bioresource Technology, 2017, 230: 112-121. |
16 | 杨仲禹. 微波强化吸波材料吸-脱附/催化氧化气相甲苯研究[D]. 北京: 北京科技大学, 2019. |
YANG Zhongyu. Studies on adsorption-desorption/catalytic oxidation of absorbing materials under microwave radiation for purification of toluene vapor[D]. Beijing: University of Science and Technology Beijing, 2019. | |
17 | 陆强. 生物质选择性热解液化的研究[D]. 合肥: 中国科学技术大学, 2010. |
LU Qiang. Selective fast pyrolysis of biomass[D]. Hefei: University of Science and Technology of China, 2010. | |
18 | DING Y L, WANG H Q, XIANG M, et al. The effect of Ni-ZSM-5 catalysts on catalytic pyrolysis and hydro-pyrolysis of biomass[J]. Frontiers in Chemistry, 2020, 8: 790. |
19 | LI Q Y, FARAMARZI A, ZHANG S, et al. Progress in catalytic pyrolysis of municipal solid waste[J]. Energy Conversion and Management, 2020, 226: 113525. |
20 | ZHOU Y C, CHEN Z Z, GONG H J, et al. Study on the feasibility of using monolithic catalyst in the in situ catalytic biomass pyrolysis for syngas production[J]. Waste Management, 2021, 120: 10-15. |
21 | 李攀. 生物质催化热解制备高选择性芳香烃生物油的实验研究[D]. 武汉: 华中科技大学, 2016. |
LI Pan. Experimental study on preparation of bio-oil with highly selective aromatics by catalytic pyrolysis of biomass[D]. Wuhan: Huazhong University of Science and Technology, 2016. | |
22 | CHEN Y W, AANJANEYA K, ATREYA A. Catalytic pyrolysis of centimeter-scale pinewood particles to produce hydrocarbon fuels: the effect of catalyst temperature and regeneration[J]. Energy & Fuels, 2020, 34(2): 1977-1983. |
23 | SHARMA R K, BAKHSHI N N. Catalytic upgrading of biomass-derived oils to transportation fuels and chemicals[J]. The Canadian Journal of Chemical Engineering, 1991, 69(5): 1071-1081. |
24 | 曾媛, 王允圃, 张淑梅, 等. 生物质微波热解制备液体燃料和化学品的研究进展[J]. 化工进展, 2021, 40(6): 3151-3162. |
ZENG Yuan, WANG Yunpu, ZHANG Shumei, et al. Research progress in preparation of liquid fuels and chemicals by microwave pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3151-3162. | |
25 | DAI L L, WANG Y P, LIU Y H, et al. A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass[J]. Science of the Total Environment, 2020, 749: 142386. |
26 | 方书起, 石崇, 李攀, 等. Fe-Zn共改性ZSM-5催化作用下生物质快速热解特性研究[J]. 化工学报, 2020, 71(4): 1637-1645. |
FANG Shuqi, SHI Chong, LI Pan, et al. Study on rapid pyrolysis characteristics of biomass catalyzed by Fe-Zn co-modified ZSM-5[J]. CIESC Journal, 2020, 71(4): 1637-1645. | |
27 | JAE J, TOMPSETT G A, FOSTER A J, et al. Investigation into the shape selectivity of zeolite catalysts for biomass conversion[J]. Journal of Catalysis, 2011, 279(2): 257-268. |
28 | VALLE B, GAYUBO A G, AGUAYO A T, et al. Selective production of aromatics by crude bio-oil valorization with a nickel-modified HZSM-5 zeolite catalyst[J]. Energy & Fuels, 2010, 24(3): 2060-2070. |
29 | LIU Q, WANG J Z, ZHOU J, et al. Promotion of monocyclic aromatics by catalytic fast pyrolysis of biomass with modified HZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2021, 153: 104964. |
30 | HUYNH T M, ARMBRUSTER U, POHL M M, et al. Hydrodeoxygenation of phenol as a model compound for bio-oil on non-noble bimetallic nickel-based catalysts[J]. ChemCatChem, 2014, 6(7): 1940-1951. |
31 | 石坤, 仲兆平, 王佳, 等. 改性HZSM-5催化微波预处理竹木快速热解[J]. 化工进展, 2018, 37(6): 2175-2181. |
SHI Kun, ZHONG Zhaoping, WANG Jia, et al. Catalytic fast pyrolysis of bamboo pretreated by microwave using modified HZSM-5 catalyst[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2175-2181. | |
32 | ABDULLAH T A, ZAIDI H A. Effect of ZnO and NiO modified HZSM-5 catalyst for ethanol conversion to hydrocarbons[J]. International Journal of Chemical Engineering and Applications, 2016, 7(3): 151-155. |
33 | CHENG S Y, WEI L, ZHAO X H, et al. Directly catalytic upgrading bio-oil vapor produced by prairie cordgrass pyrolysis over Ni/HZSM-5 using a two stage reactor[J]. AIMS Energy, 2015, 3(2): 227-240. |
34 | 屈丹龙, 李毅. 含油污泥高值转化过程Mo基负载催化剂的研究[J]. 应用化工, 2021, 50(2): 383-387. |
QU Danlong, LI Yi. The preparation of Mo based catalysts for high value catalytic pyrolysis of oily sludge[J]. Applied Chemical Industry, 2021, 50(2): 383-387. | |
35 | SUN L Z, WANG Z B, CHEN L, et al. Catalytic fast pyrolysis of biomass into aromatic hydrocarbons over Mo-modified ZSM-5 catalysts[J]. Catalysts, 2020, 10(9): 1051. |
36 | PARK Y K, YOO M L, JIN S H, et al. Catalytic fast pyrolysis of waste pepper stems over HZSM-5[J]. Renewable Energy, 2015, 79: 20-27. |
37 | YANG Z X, KUMAR A, APBLETT A. Integration of biomass catalytic pyrolysis and methane aromatization over Mo/HZSM-5 catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2016, 120: 484-492. |
38 | IISA K, KIM Y, ORTON K A, et al. Ga/ZSM-5 catalyst improves hydrocarbon yields and increases alkene selectivity during catalytic fast pyrolysis of biomass with co-fed hydrogen[J]. Green Chemistry, 2020, 22(8): 2403-2418. |
39 | CHE Q F, YANG M J, WANG X H, et al. Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis[J]. Bioresource Technology, 2019, 278: 248-254. |
40 | LY H V, PARK J W, KIM S S, et al. Catalytic pyrolysis of bamboo in a bubbling fluidized-bed reactor with two different catalysts: HZSM-5 and red mud for upgrading bio-oil[J]. Renewable Energy, 2020, 149: 1434-1445. |
41 | XUE X F, LIU Y W, WU L, et al. Catalytic fast pyrolysis of maize straw with a core-shell ZSM-5@SBA-15 catalyst for producing phenols and hydrocarbons[J]. Bioresource Technology, 2019, 289: 121691. |
42 | 吴承辉, 杜美利, 程序, 等. Co、Mg改性USY对树皮煤热解焦油产物分布的影响[J]. 现代化工, 2021, 41(1): 108-112. |
WU Chenghui, DU Meili, CHENG Xu, et al. Effects of Co and Mg modified USY on tar product distribution of bark coal pyrolysis[J]. Modern Chemical Industry, 2021, 41(1): 108-112. | |
43 | WEI B Y, JIN L J, WANG D C, et al. Effect of different acid-leached USY zeolites on in situ catalytic upgrading of lignite tar[J]. Fuel, 2020, 266: 117089. |
44 | WANG J, JIANG J C, WANG X B, et al. Enhanced BTEX formation via catalytic fast pyrolysis of styrene-butadiene rubber: comparison of different catalysts[J]. Fuel, 2020, 278: 118322. |
45 | IMRAN A, BRAMER E A, SESHAN K, et al. An overview of catalysts in biomass pyrolysis for production of biofuels[J]. Biofuel Research Journal, 2018, 5(4): 872-885. |
46 | XU W, GAO L J, YANG H M, et al. Catalytic pyrolysis of distilled lemon grass over Ni-Al based oxides supported on MCM-41[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020. DOI: 10.1080/15567036.2020.1814905. |
47 | SHI Y, LIU C, ZHUO J K, et al. Investigation of a Ni-modified MCM-41 catalyst for the reduction of oxygenates and carbon deposits during the co-pyrolysis of cellulose and polypropylene[J]. ACS Omega, 2020, 5(32): 20299-20310. |
48 | 赵锦波, 苟鑫, 陈皓, 等. 多级孔分子筛在生物质催化热裂解制备芳烃中的研究进展[J]. 生物加工过程, 2019, 17(4): 329-341. |
ZHAO Jinbo, GOU Xin, CHEN Hao, et al. Recent advances in aromatic production from biomass via catalytic fast pyrolysis over hierarchical zeolite[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(4): 329-341. | |
49 | JIA L Y, RAAD M, HAMIEH S, et al. Catalytic fast pyrolysis of biomass: superior selectivity of hierarchical zeolites to aromatics[J]. Green Chemistry, 2017, 19(22): 5442-5459. |
50 | QIAO K, SHI X, ZHOU F, et al. Catalytic fast pyrolysis of cellulose in a microreactor system using hierarchical ZSM-5 zeolites treated with various alkalis[J]. Applied Catalysis A: General, 2017, 547: 274-282. |
51 | 郑云武, 杨晓琴, 沈华杰, 等. 改性微-介孔催化剂的制备及其催化生物质热解制备芳烃[J]. 农业工程学报, 2018, 34(20): 240-249. |
ZHENG Yunwu, YANG Xiaoqin, SHEN Huajie, et al. Preparation of modified hierarchical HZSM-5 catalyst and its application on pyrolysis of biomass to enhance aromatics products[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 240-249. | |
52 | HU C S, ZHANG H Y, XIAO R. Catalytic fast pyrolysis of biomass over core-shell HZSM-5@silicalite-1 in a bench-scale two-stage fluidized-bed/fixed-bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 27-34. |
53 | 李小华, 胡超, 张小雷, 等. La改性MCM-41在线催化提质生物油研究[J]. 农业机械学报, 2018, 49(7): 296-302. |
LI Xiaohua, HU Chao, ZHANG Xiaolei, et al. In-suit catalytic online upgrading of bio-oil over La/MCM-41[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 296-302. | |
54 | GUO F Q, LI X L, LIU Y, et al. Catalytic cracking of biomass pyrolysis tar over char-supported catalysts[J]. Energy Conversion and Management, 2018, 167: 81-90. |
55 | BHANDARI P N, KUMAR A, BELLMER D D, et al. Synthesis and evaluation of biochar-derived catalysts for removal of toluene (model tar) from biomass-generated producer gas[J]. Renewable Energy, 2014, 66: 346-353. |
56 | DAI L L, ZENG Z H, TIAN X J, et al. Microwave-assisted catalytic pyrolysis of torrefied corn cob for phenol-rich bio-oil production over Fe modified bio-char catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2019, 143: 104691. |
57 | 董庆, 牛淼淼, 毕冬梅, 等. 微波辐照下活性炭载铁催化剂催化热解竹材特性研究[J]. 农业工程学报, 2019, 35(2): 235-241. |
DONG Qing, NIU Miaomiao, BI Dongmei, et al. Study on microwave pyrolysis properties of bamboo by using activated carbon-supported iron catalyst[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2): 235-241. | |
58 | NHUCHHEN D R, AFZAL M T, DREISE T, et al. Characteristics of biochar and bio-oil produced from wood pellets pyrolysis using a bench scale fixed bed, microwave reactor[J]. Biomass and Bioenergy, 2018, 119: 293-303. |
59 | 杨晓霞, 汪自典, 付峰, 等. 炭基催化剂对煤热解油气品质的影响及机理[J]. 煤炭转化, 2019, 42(3): 10-17. |
YANG Xiaoxia, WANG Zidian, FU Feng, et al. Effects of carbon-based catalysts on quality of coal tar and gas and its mechanism[J]. Coal Conversion, 2019, 42(3): 10-17. | |
60 | 牛永红, 张骏, 蔡尧尧, 等. 基于载La半焦基催化的松木热解试验[J]. 农业机械学报, 2021, 52(1): 286-293. |
NIU Yonghong, ZHANG Jun, CAI Yaoyao, et al. Experiment on pine pyrolysis based on semi-coke catalyzed by La[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(1): 286-293. | |
61 | 庞赟佶, 刘心明, 陈义胜, 等. 生物炭负载Ca和Fe催化玉米秸秆热解挥发分重整提高产气率[J]. 农业工程学报, 2019, 35(3): 211-217. |
PANG Yunji, LIU Xinming, CHEN Yisheng, et al. Catalytic reforming of volatiles in pyrolysis by using biomass carbon particle loading Ca and Fe and improving biogas yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 211-217. | |
62 | LI J, DAI J J, LIU G Q, et al. Biochar from microwave pyrolysis of biomass: a review[J]. Biomass and Bioenergy, 2016, 94: 228-244. |
63 | LUQUE R, MENÉNDEZ J A, ARENILLAS A, et al. Microwave-assisted pyrolysis of biomass feedstocks: the way forward? [J]. Energy Environ Sci, 2012, 5(2): 5481-5488. |
64 | SHI K Q, YAN J F, MENÉNDEZ J A, et al. Production of H2-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming[J]. Frontiers in Chemistry, 2020, 8: 3. |
65 | DAI L L, ZENG Z H, YANG Q, et al. Synthesis of iron nanoparticles-based hydrochar catalyst for ex-situ catalytic microwave-assisted pyrolysis of lignocellulosic biomass to renewable phenols[J]. Fuel, 2020, 279: 118532. |
66 | 孟光范, 孙来芝, 陈雷, 等. 生物质催化热解技术研究进展[J]. 山东科学, 2016, 29(4): 50-54, 67. |
MENG Guangfan, SUN Laizhi, CHEN Lei, et al. Research advances of biomass catalytic pyrolysis[J]. Shandong Science, 2016, 29(4): 50-54, 67. | |
67 | BHOI P R, OUEDRAOGO A S, SOLOIU V, et al. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis[J]. Renewable and Sustainable Energy Reviews, 2020, 121: 109676. |
68 | ZHANG C T, ZHANG L J, LI Q Y, et al. Catalytic pyrolysis of poplar wood over transition metal oxides: correlation of catalytic behaviors with physiochemical properties of the oxides[J]. Biomass and Bioenergy, 2019, 124: 125-141. |
69 | MISKOLCZI N, ATEŞ F, BORSODI N. Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part II: Contaminants, char and pyrolysis oil properties[J]. Bioresource Technology, 2013, 144: 370-379. |
70 | CAO Y L, ZHANG H P, LIU K K, et al. Biowaste-derived bimetallic Ru-MoOx catalyst for the direct hydrogenation of furfural to tetrahydrofurfuryl alcohol[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(15): 12858-12866. |
71 | 毕冬梅, 张凯真, 易维明, 等. 白云石基多孔陶瓷负载Al2O3催化生物质热解试验[J]. 农业机械学报, 2019, 50(10): 315-322. |
BI Dongmei, ZHANG Kaizhen, YI Weiming, et al. Catalytic pyrolysis of biomass with porous ceramic loading aluminum oxide[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 315-322. | |
72 | LY H V, LIM D H, SIM J W, et al. Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst[J]. Energy, 2018, 162: 564-575. |
73 | 牛永红, 吴会军, 王忠胜, 等. 白云石催化成型松木的热解动力学研究[J]. 应用化工, 2018, 47(2): 254-257, 267. |
NIU Yonghong, WU Huijun, WANG Zhongsheng, et al. Research on pyrolysis dynamic of pine sawdust catalyzed by dolomite[J]. Applied Chemical Industry, 2018, 47(2): 254-257, 267. | |
74 | KONG X L, QIU M H, WANG A R, et al. Influence of alumina binders on adhesion and cohesion during preparation of Cu-SAPO-34/monolith catalysts[J]. International Journal of Applied Ceramic Technology, 2018, 15(6): 1490-1501. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[14] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[15] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |