Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (9): 5156-5165.DOI: 10.16085/j.issn.1000-6613.2021-0632
Previous Articles Next Articles
LUO Zhibin1,2(), LONG Ran2, WANG Xiaobo1, PEI Aiguo1, XIONG Yujie2()
Received:
2021-03-29
Revised:
2021-07-04
Online:
2021-09-13
Published:
2021-09-05
Contact:
XIONG Yujie
罗志斌1,2(), 龙冉2, 王小博1, 裴爱国1, 熊宇杰2()
通讯作者:
熊宇杰
作者简介:
罗志斌(1989年—),男,博士,博士后,研究方向为氢能以及二氧化碳利用技术产业化。E-mail:基金资助:
CLC Number:
LUO Zhibin, LONG Ran, WANG Xiaobo, PEI Aiguo, XIONG Yujie. Thermal-enhanced photocatalytic carbon dioxide reduction[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5156-5165.
罗志斌, 龙冉, 王小博, 裴爱国, 熊宇杰. 热增强的光催化二氧化碳还原技术[J]. 化工进展, 2021, 40(9): 5156-5165.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0632
催化材料 | 反应物 | 产物 | 能量来源 | 催化性能 | 参考文献 |
---|---|---|---|---|---|
AuCu/g-C3N4 | CO2 | CH3CH2OH | 300W氙灯(λ>420nm)+外热120℃ | 产率为0.89mmol · g | [ |
Bi4TaO8Cl/W18O49异质结 | CO2 | CO | 模拟光源20mW · cm-2+外热120℃ | 产率为23.42μmol · g | [ |
Pt/TiO2-x | CO2 | CH4 | 模拟光源AM 1.5G+外热120℃ | 产率为0.3412μmol · g | [ |
In2O3-x(OH)y | CO2+H2 | CO | 聚焦氙灯光源约20kW · m-2 | 产率为22.0μmol · g | [ |
VIII族金属纳米颗粒 | CO2 | CH4 | 300W氙灯光源 | 相对于光催化方法,光热催化CO2还原产率级别提升了几个数量级,从μmol · g | [ |
B纳米颗粒 | CO2 | CO、CH4 | 300W氙灯光源 | CO和CH4的产率分别为1.0μmol · g | [ |
TiO2光子晶体 | CO2 | CH4 | 300W氙灯光源 | CH4产率达到35.0μmol · h-1 · m-2,分别达到商用P25和TiO2纳米管的15.9倍和4.7倍 | [ |
Ni/CexTiyO2 | CO2+H2 | CH4 | 300W氙灯光源 | CH4产率达到17.0mmol · g | [ |
TiO2-石墨烯 复合材料 | CO2 | CO、CH4 | 300W氙灯光源 4.38kW · m-2 | CO的产率达到了5.2μmol · g-1cat · h-1,CH4的产率达到了26.7μmol · g | [ |
Pd-TiO2 | CO2 | CO | 500W汞灯光源 | CO产率11.05μmol · g | [ |
Ni-CeO2/SiO2复合材料 | CO2+CH4 | H2、CO | 500W氙灯光源 | H2和CO的产率分别达到了33.42mmol · min-1 · g-1cat和41.53mmol · min-1 · g | [ |
MoO3-x | CO2 | CO、CH4 | 模拟太阳光能 | CO产率达到10.3μmol · g | [ |
催化材料 | 反应物 | 产物 | 能量来源 | 催化性能 | 参考文献 |
---|---|---|---|---|---|
AuCu/g-C3N4 | CO2 | CH3CH2OH | 300W氙灯(λ>420nm)+外热120℃ | 产率为0.89mmol · g | [ |
Bi4TaO8Cl/W18O49异质结 | CO2 | CO | 模拟光源20mW · cm-2+外热120℃ | 产率为23.42μmol · g | [ |
Pt/TiO2-x | CO2 | CH4 | 模拟光源AM 1.5G+外热120℃ | 产率为0.3412μmol · g | [ |
In2O3-x(OH)y | CO2+H2 | CO | 聚焦氙灯光源约20kW · m-2 | 产率为22.0μmol · g | [ |
VIII族金属纳米颗粒 | CO2 | CH4 | 300W氙灯光源 | 相对于光催化方法,光热催化CO2还原产率级别提升了几个数量级,从μmol · g | [ |
B纳米颗粒 | CO2 | CO、CH4 | 300W氙灯光源 | CO和CH4的产率分别为1.0μmol · g | [ |
TiO2光子晶体 | CO2 | CH4 | 300W氙灯光源 | CH4产率达到35.0μmol · h-1 · m-2,分别达到商用P25和TiO2纳米管的15.9倍和4.7倍 | [ |
Ni/CexTiyO2 | CO2+H2 | CH4 | 300W氙灯光源 | CH4产率达到17.0mmol · g | [ |
TiO2-石墨烯 复合材料 | CO2 | CO、CH4 | 300W氙灯光源 4.38kW · m-2 | CO的产率达到了5.2μmol · g-1cat · h-1,CH4的产率达到了26.7μmol · g | [ |
Pd-TiO2 | CO2 | CO | 500W汞灯光源 | CO产率11.05μmol · g | [ |
Ni-CeO2/SiO2复合材料 | CO2+CH4 | H2、CO | 500W氙灯光源 | H2和CO的产率分别达到了33.42mmol · min-1 · g-1cat和41.53mmol · min-1 · g | [ |
MoO3-x | CO2 | CO、CH4 | 模拟太阳光能 | CO产率达到10.3μmol · g | [ |
1 | XU C, KOHLER T A, LENTON T M, et al. Future of the human climate niche[J]. PNAS, 2020, 117(21): 11350-11355. |
2 | 巩金龙. CO2化学转化研究进展概述[J]. 化工学报, 2017, 68(4): 1282-1285. |
GONG Jinlong. A brief overview on recent progress on chemical conversion of CO2[J]. CIESC Journal, 2017, 68(4): 1282-1285. | |
3 | 周威, 郭君康, 申升, 等. 光电催化二氧化碳还原研究进展[J]. 物理化学学报, 2020, 36(3): 71-81. |
ZHOU Wei, GUO Junkang, SHEN Sheng, et al. Progress in photoelectrocatalytic reduction of carbon dioxide[J]. Acta Physico-Chimica Sinica, 2020, 36(3): 71-81. | |
4 | 陈庆云, 周苗, 王云海. BiVO4光催化剂的合成及其可见光下还原二氧化碳[J]. 化工进展, 2010, 29(S1): 443-445. |
CHEN Qingyun, ZHOU Miao, WANG Yunhai. Synthesis of BiVO4 photocatalyst and reduction of carbon dioxide under visible light[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 443-445. | |
5 | SASTRE F, PUGA A V, LIU L C, et al. Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation[J]. Journal of the American Chemical Society, 2014, 136(19): 6798-6801. |
6 | JIANG X, NIE X W, GUO X W, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034. |
7 | 王丽敏, 王利清, 张一弛, 等. 光热协同催化技术在能源领域的应用[J]. 化工进展, 2017, 36(7): 2457-2463. |
WANG Limin, WANG Liqing, ZHANG Yichi, et al. Photothermal synergistic catalytic technology in energy field[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2457-2463. | |
8 | WANG W, WANG S P, MA X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703. |
9 | LI P Y, LIU L, AN W J, et al. Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C-C coupling photothermal catalytic reduction of CO2 to ethanol[J]. Applied Catalysis B: Environmental, 2020, 266: 118618. |
10 | YAN J Y, WANG C H, MA H, et al. Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction[J]. Applied Catalysis B: Environmental, 2020, 268: 118401. |
11 | YU F, WANG C H, MA H, et al. Revisiting Pt/TiO2 photocatalysts for thermally assisted photocatalytic reduction of CO2[J]. Nanoscale, 2020, 12(13): 7000-7010. |
12 | MENG X G, WANG T, LIU L Q, et al. Photothermal conversion of CO2 into CH4 with H2 over Group Ⅷ nanocatalysts: an alternative approach for solar fuel production[J]. Angewandte Chemie International Edition, 2014, 53(43): 11478-11482. |
13 | XU C Y, HUANG W H, LI Z, et al. Photothermal coupling factor achieving CO2 reduction based on palladium-nanoparticle-loaded TiO2[J]. ACS Catalysis, 2018, 8(7): 6582-6593. |
14 | WEI G H, ZHENG D M, XU L J, et al. Photothermal catalytic activity and mechanism of LaNixCo1-xO3(0≤x≤1) perovskites for CO2 reduction to CH4 and CH3OH with H2O[J]. Materials Research Express, 2019, 6(8): 086221. |
15 | 赵晨辰, 何向明, 王莉, 等. 电化学还原CO2阴极材料研究进展[J]. 化工进展, 2013, 32(2): 373-380. |
ZHAO Chenchen, HE Xiangming, WANG Li, et al. Progress of cathode materials for electrochemical reduction of carbon dioxide[J]. Chemical Industry and Engineering Progress, 2013, 32(2): 373-380. | |
16 | 陈钱, 匡勤, 谢兆雄. 二维材料在光催化二氧化碳还原中的研究进展[J]. 化学学报, 2021, 79(1): 10-22. |
CHEN Qian, KUANG Qin, XIE Zhaoxiong. Research progress of photocatalytic CO2 reduction based on two-dimensional materials[J]. Acta Chimica Sinica, 2021, 79(1): 10-22. | |
17 | 王路喜, 杨芳麒, 林欢欢, 等. Cu修饰的多孔碳材料高效电化学还原CO2为CO[J]. 化工进展, 2020, 39(9): 3685-3691. |
WANG Luxi, YANG Fangqi, LIN Huanhuan, et al. Electrochemical reduction of CO2 to CO by Cu modified porous carbon materials[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3685-3691. | |
18 | LI Dashuai, HUANG Yu, LI Songmei, et al. Thermal coupled photoconductivity as a tool to understand the photothermal catalytic reduction of CO2[J]. Chinese Journal of Catalysis, 2020, 41(1): 154-160. |
19 | ZHAO Ziyan, DORONKIN D E, YE Yinghao, et al. Visible light-enhanced photothermal CO2 hydrogenation over Pt/Al2O3 catalyst[J]. Chinese Journal of Catalysis, 2020, 41(2): 286-295. |
20 | QI Y H, SONG L Z, OUYANG S X, et al. Photoinduced defect engineering: enhanced photothermal catalytic performance of 2D black In2O3-x nanosheets with bifunctional oxygen vacancies[J]. Advanced Materials, 2020, 32(6): 1903915. |
21 | HOCH L B, O’BRIEN P G, JELLE A, et al. Nanostructured indium oxide coated silicon nanowire arrays: a hybrid photothermal/photochemical approach to solar fuels[J]. ACS Nano, 2016, 10(9): 9017-9025. |
22 | LIU G G, MENG X G, ZHANG H B, et al. Elemental boron for efficient carbon dioxide reduction under light irradiation[J]. Angewandte Chemie International Edtion, 2017, 129(20): 5662-5666. |
23 | LOW J, ZHANG L Y, ZHU B C, et al. TiO2Photonic crystals with localized surface photothermal effect and enhanced photocatalytic CO2 reduction activity[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15653-15661. |
24 | WANG L C, WANG Y, CHENG Y, et al. Hydrogen-treated mesoporous WO3 as a reducing agent of CO2 to fuels (CH4 and CH3OH) with enhanced photothermal catalytic performance[J]. Journal of Materials Chemistry A, 2016, 4(14): 5314-5322. |
25 | KHO E T, JANTARANG S, ZHENG Z K, et al. Harnessing the beneficial attributes of ceria and titania in a mixed-oxide support for nickel-catalyzed photothermal CO2 methanation[J]. Engineering, 2017, 3(3): 393-401. |
26 | JANTARANG S, LOVELL E C, TAN T H, et al. Role of support in photothermal carbon dioxide hydrogenation catalysed by Ni/CexTiyO2[J]. Progress in Natural Science: Materials International, 2018, 28(2): 168-177. |
27 | 李炳杰, 吴志坚, 陈澍, 等. Ni/Zn/Cr系复合金属氧化物的制备及其光催化还原二氧化碳性能研究[J]. 分子催化, 2014, 28(3): 268-274. |
LI Bingjie, WU Zhijian, CHEN Shu, et al. Preparation and photocatalytic CO2 reduction activity of Ni/Zn/Cr composite metal oxides[J]. Journal of Molecular Catalysis, 2014, 28(3): 268-274. | |
28 | XU M, HU X T, WANG S L, et al. Photothermal effect promoting CO2 conversion over composite photocatalyst with high graphene content[J]. Journal of Catalysis, 2019, 377: 652-661. |
29 | LINIC S, CHRISTOPHER P, INGRAM D B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy[J]. Nature Materials, 2011, 10(12): 911-921. |
30 | MASCARETTI L, DUTTA A, KMENT Š, et al. Plasmon-enhanced photoelectrochemical water splitting for efficient renewable energy storage[J]. Advanced Materials, 2019, 31(31): 1805513. |
31 | CHIU Y H, CHANG K D, HSU Y J. Plasmon-mediated charge dynamics and photoactivity enhancement for Au-decorated ZnO nanocrystals[J]. Journal of Materials Chemistry A, 2018, 6(10): 4286-4296. |
32 | WANG J, PAN S L, CHEN M Y, et al. Gold nanorod-enhanced light absorption and photoelectrochemical performance of α-Fe2O3 thin-film electrode for solar water splitting[J]. The Journal of Physical Chemistry C, 2013, 117(42): 22060-22068. |
33 | WU D D, DENG K X, HU B, et al. Plasmon-assisted photothermal catalysis of low-pressure CO2 hydrogenation to methanol over Pd/ZnO catalyst[J]. ChemCatChem, 2019, 11(6): 1598-1601. |
34 | JIANG Z K, LI Y Z, ZHANG Q, et al. A novel nanocomposite of mesoporous silica supported Ni nanocrystals modified by ceria clusters with extremely high light-to-fuel efficiency for UV-vis-IR light-driven CO2 reduction[J]. Journal of Materials Chemistry A, 2019, 7(9): 4881-4892. |
35 | LI J, YE Y H, YE L Q, et al. Sunlight induced photo-thermal synergistic catalytic CO2 conversion via localized surface plasmon resonance of MoO3-x[J]. Journal of Materials Chemistry A, 2019, 7(6): 2821-2830. |
36 | 张继宏, 钟地长, 鲁统部. 钴(Ⅱ)基分子配合物用于光催化二氧化碳还原[J]. 物理化学学报, 2021, 37(5): 111-125. |
ZHANG Jihong, ZHONG Dichang, LU Tongbu. Co(Ⅱ)-based molecular complexes for photochemical CO2 reduction[J]. Acta Physico-Chimica Sinica, 2021, 37(5): 111-125. | |
37 | 吴进, 刘京, 夏雾, 等. 基于CdS和CdSe纳米半导体材料的可见光催化二氧化碳还原研究进展[J]. 物理化学学报, 2021, 37(5): 103-110. |
WU Jin, LIU Jing, XIA Wu, et al. Advances on photocatalytic CO2 reduction based on CdS and CdSe nano-semiconductors[J]. Acta Physico-Chimica Sinica, 2021, 37(5): 103-110. | |
38 | 常晓侠, 巩金龙. 表面反应在半导体光催化水分解过程中的重要性[J]. 物理化学学报, 2016, 32(1): 2-13. |
CHANG Xiaoxia, GONG Jinlong. On the importance of surface reactions on semiconductor photocatalysts for solar water splitting[J]. Acta Physico-Chimica Sinica, 2016, 32(1): 2-13. | |
39 | ZHONG J W, YANG X F, WU Z L, et al. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol[J]. Chemical Society Reviews, 2020, 49(5): 1385-1413. |
40 | 林海周, 罗志斌, 裴爱国, 等. 二氧化碳与氢合成甲醇技术和产业化进展[J]. 南方能源建设, 2020, 7(2): 14-19. |
LIN Haizhou, LUO Zhibin, PEI Aiguo, et al. Technology and industrialization progress on methanol synthesis from carbon dioxide and hydrogen[J]. Southern Energy Construction, 2020, 7(2): 14-19. |
[1] | CHEN Bangfu, OUYANG Ping, LI Yuhan, DUAN Youyu, DONG Fan. Application of ZnSn(OH)6-based nanomaterials in environmental photocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 756-764. |
[2] | SONG Yali, LI Ziyan, YANG Cairong, HUANG Long, ZHANG Hongzhong. Research progress of non-metallic element doped graphitic carbon nitride photocatalytic materials [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5299-5309. |
[3] | ZHANG Jinhui, ZHANG Huan, ZHU Xinfeng, SONG Zhongxian, KANG Haiyan, LIU Hongpan, DENG Wei, HOU Guangchao, LI Guiting, HUANG Zhenzhen. Research progress of UiO-66 materials for adsorption and photocatalytic oxidation of typical organic compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 445-456. |
[4] | LIU Yixuan, LIN Yuechao, MA Weifang. Research progress on degradation of halogenated organic contaminants in water by visible light photocatalysis [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 571-579. |
[5] | CHANG Yaoping, GUAN Xiushuai, ZHENG Qian, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Hydrothermal preparation of 3D flower-spherical Bi2SiO5 for photocatalytic esterification of oleic acid [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4181-4191. |
[6] | GAO Tian, ZHANG Yili, XIONG Zhuo, ZHAO Yongchun, ZHANG Junying. Research progress of modified titanium oxide photocatalytic oxidation of elemental mercury and its influencing factors [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 690-700. |
[7] | ZHANG Xuan, SONG Xiaosan, ZHAO Po, DONG Yuanhua, LIU Yun. A critical review of advanced oxidation technology to treat 1,4-dioxane pollution [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 380-388. |
[8] | SU Biyun, RAN Liangtao, HU Yahe, ZHANG Ao, HAN Qiaoqiao, WU Jindi, LIU Yiting, MENG Zuchao. Research progress on demulsification of petroleum Pickering emulsion by molecular oxidation, photocatalytic oxidation and electrochemical oxidation [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3995-4002. |
[9] | LI Yan, SONG Shuang, LIAN Xiaoxue. Optical and photocatalytic properties of MoS2/ZnO nanocomposite [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3870-3877. |
[10] | Yuan HE, Lei XU, Yi XIA, Xueqian WANG, Ruiqi GANG, Langlang WANG. Photocatalytic performance of carbon quantum dots modified g-C3N4/SnO2 composites [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 908-916. |
[11] | BIAN Junjie, WANG Wanyuan, MAN Hengxiao, WEN Chengxin. BiOX(Cl, Br, I)/Bi2WO6 heterojunction composites as photocatalysts for high concentration NO removal [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6094-6101. |
[12] | Yumei WANG, Haiwei JI, Tong CHANG, Yushui BI. Preparation, characterization and enhanced photocatalytic sterilization activity of Au/TiO2 composite [J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1857-1865. |
[13] | Jiahao WANG, Jiacheng LI, Kai XU, Zizeng LIN, Zheng WANG. Research progress of photocatalytic materials for removing viruses in water [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 4248-4255. |
[14] | Hongzhi WANG,Jun LI,Suwei YAO,Weiguo ZHANG. Synthesis and photocatalytic properties of pn-type Cu2O-WO3 [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5442-5448. |
[15] | Qiaoling ZHANG, Zhao QIN, Youzhi LIU, Yanting SHI, Jingwen ZHANG, Guangping ZENG. Adsorption kinetics and photocatalytic activity of grapheneoxide-TiO2 composites for three dyes [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2870-2879. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |