Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (9): 5166-5179.DOI: 10.16085/j.issn.1000-6613.2021-0460
Previous Articles Next Articles
LIN Wenzhu1(), LING Ziye1,2, FANG Xiaoming1,2, ZHANG Zhengguo1,2()
Received:
2021-03-08
Revised:
2021-05-20
Online:
2021-09-13
Published:
2021-09-05
Contact:
ZHANG Zhengguo
林文珠1(), 凌子夜1,2, 方晓明1,2, 张正国1,2()
通讯作者:
张正国
作者简介:
林文珠(1993—),女,博士研究生,研究方向为传热强化。E-mail:基金资助:
CLC Number:
LIN Wenzhu, LING Ziye, FANG Xiaoming, ZHANG Zhengguo. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179.
林文珠, 凌子夜, 方晓明, 张正国. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9): 5166-5179.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0460
106 | SAEED R M, SCHLEGEL J P, SAWAFTA R, et al. Plate type heat exchanger for thermal energy storage and load shifting using phase change material[J]. Energy Conversion and Management, 2019, 181: 120-132. |
107 | GÜREL B. Thermal performance evaluation for solidification process of latent heat thermal energy storage in a corrugated plate heat exchanger[J]. Applied Thermal Engineering, 2020, 174: 115312. |
108 | PALOMBA V, BRANCATO V, FRAZZICA A. Thermal performance of a latent thermal energy storage for exploitation of renewables and waste heat: an experimental investigation based on an asymmetric plate heat exchanger[J]. Energy Conversion and Management, 2019, 200: 112121. |
109 | LIN W Z, ZHANG W B, LING Z Y, et al. Experimental study of the thermal performance of a novel plate type heat exchanger with phase change material[J]. Applied Thermal Engineering, 2020, 178: 115630. |
110 | LIN W Z, LING Z Y, ZHANG Z G, et al. Experimental and numerical investigation of sebacic acid/expanded graphite composite phase change material in a double-spiral coiled heat exchanger[J]. Journal of Energy Storage, 2020, 32: 101849. |
111 | HU W J, SONG M J, JIANG Y Q, et al. A modeling study on the heat storage and release characteristics of a phase change material based double-spiral coiled heat exchanger in an air source heat pump for defrosting[J]. Applied Energy, 2019, 236: 877-892. |
112 | MAHDI M S, MAHOOD H B, CAMPBELL A N, et al. Experimental study on the melting behavior of a phase change material in a conical coil latent heat thermal energy storage unit[J]. Applied Thermal Engineering, 2020, 175: 114684. |
113 | ZHENG X J, XIE N, CHEN C X, et al. Numerical investigation on paraffin/expanded graphite composite phase change material based latent thermal energy storage system with double spiral coil tube[J]. Applied Thermal Engineering, 2018, 137: 164-172. |
114 | SAYDAM V, PARSAZADEH M, RADEEF M, et al. Design and experimental analysis of a helical coil phase change heat exchanger for thermal energy storage[J]. Journal of Energy Storage, 2019, 21: 9-17. |
1 | 张所续, 马伯永. 世界能源发展趋势与中国能源未来发展方向[J]. 中国国土资源经济, 2019, 32(10): 20-27, 33. |
ZHANG Suoxu, MA Boyong. Development trend of world energy and future development directions of China’s energy[J]. Natural Resource Economics of China, 2019, 32(10): 20-27, 33. | |
2 | 方行明, 何春丽, 张蓓. 世界能源演进路径与中国能源结构的转型[J]. 政治经济学评论, 2019, 10(2): 178-201. |
FANG Xingming, HE Chunli, ZHANG Bei. Energy evolutional path of the world and the energy structure transformation of China[J]. China Review of Political Economy, 2019, 10(2): 178-201. | |
3 | CENTER B P. Annual energy outlook 2020 [EB/OL]. . |
4 | JOUHARA H, ŻABNIEŃSKA-GÓRA A, KHORDEHGAH N, et al. Latent thermal energy storage technologies and applications: a review[J]. International Journal of Thermofluids, 2020, 5/6: 100039. |
5 | NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
6 | ELIAS C N, STATHOPOULOS V N. A comprehensive review of recent advances in materials aspects of phase change materials in thermal energy storage[J]. Energy Procedia, 2019, 161: 385-394. |
7 | 陈颖, 姜庆辉, 辛集武, 等. 相变储能材料及其应用研究进展[J]. 材料工程, 2019, 47(7): 1-10. |
CHEN Ying, JIANG Qinghui, XIN Jiwu, et al. Research status and application of phase change materials[J]. Journal of Materials Engineering, 2019, 47(7): 1-10. | |
8 | ZAYED M E, ZHAO J, ELSHEIKH A H, et al. Applications of cascaded phase change materials in solar water collector storage tanks: a review[J]. Solar Energy Materials and Solar Cells, 2019, 199: 24-49. |
9 | LI D C, WANG J H, DING Y L, et al. Dynamic thermal management for industrial waste heat recovery based on phase change material thermal storage[J]. Applied Energy, 2019, 236: 1168-1182. |
10 | CUNHA S R L DA, DE AGUIAR J L B. Phase change materials and energy efficiency of buildings: a review of knowledge[J]. Journal of Energy Storage, 2020, 27: 101083. |
11 | JIANG Z Y, QU Z G. Lithium-ion battery thermal management using heat pipe and phase change material during discharge-charge cycle: a comprehensive numerical study[J]. Applied Energy, 2019, 242: 378-392. |
12 | QURESHI Z A, ALI H M, KHUSHNOOD S. Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: a review[J]. International Journal of Heat and Mass Transfer, 2018, 127: 838-856. |
13 | SINGH R, SADEGHI S, SHABANI B. Thermal conductivity enhancement of phase change materials for low-temperature thermal energy storage applications[J]. Energies, 2018, 12(1): 75. |
14 | PRADO J I, LUGO L. Enhancing the thermal performance of a stearate phase change material with graphene nanoplatelets and MgO nanoparticles[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39108-39117. |
15 | CHEN X, GAO H Y, HAI G T, et al. Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy[J]. Energy Storage Materials, 2020, 26: 129-137. |
16 | OYA T, NOMURA T, TSUBOTA M, et al. Thermal conductivity enhancement of erythritol as PCM by using graphite and nickel particles[J]. Applied Thermal Engineering, 2013, 61(2): 825-828. |
17 | ZHANG L, ZHOU K C, WEI Q, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage[J]. Applied Energy, 2019, 233/234: 208-219. |
18 | WANG F X, LIN W Z, LING Z Y, et al. A comprehensive review on phase change material emulsions: fabrication, characteristics, and heat transfer performance[J]. Solar Energy Materials and Solar Cells, 2019, 191: 218-234. |
19 | LIU H, WANG X D, WU D Z. Innovative design of microencapsulated phase change materials for thermal energy storage and versatile applications: a review[J]. Sustainable Energy & Fuels, 2019, 3(5): 1091-1149. |
20 | LIU Z F, CHEN Z H, YU F. Enhanced thermal conductivity of microencapsulated phase change materials based on graphene oxide and carbon nanotube hybrid filler[J]. Solar Energy Materials and Solar Cells, 2019, 192: 72-80. |
21 | ZHOU Y, LI C H, WU H, et al. Construction of hybrid graphene oxide/graphene nanoplates shell in paraffin microencapsulated phase change materials to improve thermal conductivity for thermal energy storage[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597: 124780. |
22 | LIU H, WANG X D, WU D Z, et al. Morphology-controlled synthesis of microencapsulated phase change materials with TiO2 shell for thermal energy harvesting and temperature regulation[J]. Energy, 2019, 172: 599-617. |
23 | JOSHI V, RATHOD M K. Constructal enhancement of thermal transport in latent heat storage systems assisted with fins[J]. International Journal of Thermal Sciences, 2019, 145: 105984. |
24 | LEONG K Y, ABDUL RAHMAN M R, GURUNATHAN B A. Nano-enhanced phase change materials: a review of thermo-physical properties, applications and challenges[J]. Journal of Energy Storage, 2019, 21: 18-31. |
25 | WU W X, WU W, WANG S F. Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications[J]. Applied Energy, 2019, 236: 10-21. |
115 | LIN W Z, LING Z Y, FANG X M, et al. Experimental and numerical research on thermal performance of a novel thermal energy storage unit with phase change material[J]. Applied Thermal Engineering, 2021, 186: 116493. |
26 | XU T, CHEN Q L, HUANG G S, et al. Preparation and thermal energy storage properties of D-Mannitol/expanded graphite composite phase change material[J]. Solar Energy Materials and Solar Cells, 2016, 155: 141-146. |
27 | 方晓明, 张正国, 陈中华, 等. 有机物/膨胀石墨复合相变储热建筑材料及其制备方法: CN101239798A[P]. 2008-08-13. |
FANG Xiaoming, ZHANG Zhengguo, CHEN Zhonghua, et al. Organic matter/expandable graphite composite phase change heat-storing building material and preparation method thereof: CN101239798A[P]. 2008-08-13. | |
28 | ZHANG Z G, FANG X M. Study on paraffin/expanded graphite composite phase change thermal energy storage material[J]. Energy Conversion and Management, 2006, 47(3): 303-310. |
29 | ZHANG Z G, ZHANG N, PENG J, et al. Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material[J]. Applied Energy, 2012, 91(1): 426-431. |
30 | WANG S P, QIN P, FANG X M, et al. A novel sebacic acid/expanded graphite composite phase change material for solar thermal medium-temperature applications[J]. Solar Energy, 2014, 99: 283-290. |
31 | ZHANG Q, WANG H C, LING Z Y, et al. RT100/expand graphite composite phase change material with excellent structure stability, photo-thermal performance and good thermal reliability[J]. Solar Energy Materials and Solar Cells, 2015, 140: 158-166. |
32 | LING Z Y, CHEN J J, XU T, et al. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model[J]. Energy Conversion and Management, 2015, 102: 202-208. |
33 | YUAN M D, REN Y X, XU C, et al. Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage[J]. Renewable Energy, 2019, 136: 211-222. |
34 | SONG Y L, ZHANG N, JING Y G, et al. Experimental and numerical investigation on dodecane/expanded graphite shape-stabilized phase change material for cold energy storage[J]. Energy, 2019, 189: 116175. |
35 | LING Z Y, CHEN J J, FANG X M, et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system[J]. Applied Energy, 2014, 121: 104-113. |
36 | LING Z Y, WANG F X, FANG X M, et al. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling[J]. Applied Energy, 2015, 148: 403-409. |
37 | CAO J H, LUO M Y, FANG X M, et al. Liquid cooling with phase change materials for cylindrical Li-ion batteries: an experimental and numerical study[J]. Energy, 2020, 191: 116565. |
38 | SENTHILKUMAR M, BALASUBRAMANIAN K R, KOTTALA R K, et al. Characterization of form-stable phase-change material for solar photovoltaic cooling[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(6): 2487-2496. |
39 | LIU L F, CHEN J Y, QU Y, et al. A foamed cement blocks with paraffin/expanded graphite composite phase change solar thermal absorption material[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110038. |
40 | LING Z Y, LI S M, ZHANG Z G, et al. A shape-stabilized MgCl2·6H2O-Mg(NO3)2·6H2O/expanded graphite composite phase change material with high thermal conductivity and stability[J]. Journal of Applied Electrochemistry, 2018, 48(10): 1131-1138. |
41 | YE R D, LIN W Z, YUAN K J, et al. Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material[J]. Applied Energy, 2017, 193: 325-335. |
42 | YE R D, LIN W Z, FANG X M, et al. A numerical study of building integrated with CaCl2·6H2O/expanded graphite composite phase change material[J]. Applied Thermal Engineering, 2017, 126: 480-488. |
43 | YE R D, ZHANG C, SUN W C, et al. Novel wall panels containing CaCl2·6H2O-Mg(NO3)2·6H2O/expanded graphite composites with different phase change temperatures for building energy savings[J]. Energy and Buildings, 2018, 176: 407-417. |
44 | SUN W C, HUANG R, LING Z Y, et al. Two types of composite phase change panels containing a ternary hydrated salt mixture for use in building envelope and ventilation system[J]. Energy Conversion and Management, 2018, 177: 306-314. |
45 | SUN W C, HUANG R, LING Z Y, et al. Numerical simulation on the thermal performance of a PCM-containing ventilation system with a continuous change in inlet air temperature[J]. Renewable Energy, 2020, 145: 1608-1619. |
46 | SUN W C, ZHANG Y X, LING Z Y, et al. Experimental investigation on the thermal performance of double-layer PCM radiant floor system containing two types of inorganic composite PCMs[J]. Energy and Buildings, 2020, 211: 109806. |
47 | FANG Y T, DING Y F, TANG Y F, et al. Thermal properties enhancement and application of a novel sodium acetate trihydrate-formamide/expanded graphite shape-stabilized composite phase change material for electric radiant floor heating[J]. Applied Thermal Engineering, 2019, 150: 1177-1185. |
48 | ZHOU Y, SUN W C, LING Z Y, et al. Hydrophilic modification of expanded graphite to prepare a high-performance composite phase change block containing a hydrate salt[J]. Industrial & Engineering Chemistry Research, 2017, 56(50): 14799-14806. |
49 | ZHOU S Y, ZHOU Y, LING Z Y, et al. Modification of expanded graphite and its adsorption for hydrated salt to prepare composite PCMs[J]. Applied Thermal Engineering, 2018, 133: 446-451. |
50 | LIU J W, WANG Q H, LING Z Y, et al. A novel process for preparing molten salt/expanded graphite composite phase change blocks with good uniformity and small volume expansion[J]. Solar Energy Materials and Solar Cells, 2017, 169: 280-286. |
51 | XU T, LI Y T, CHEN J Y, et al. Improving thermal management of electronic apparatus with paraffin (PA)/expanded graphite (EG)/graphene (GN) composite material[J]. Applied Thermal Engineering, 2018, 140: 13-22. |
52 | LIU J W, XIE M, LING Z Y, et al. Novel MgCl2-KCl/expanded graphite/graphite paper composite phase change blocks with high thermal conductivity and large latent heat[J]. Solar Energy, 2018, 159: 226-233. |
53 | XIE M, HUANG J C, LING Z Y, et al. Improving the heat storage/release rate and photo-thermal conversion performance of an organic PCM/expanded graphite composite block[J]. Solar Energy Materials and Solar Cells, 2019, 201: 110081. |
54 | HE J S, YANG X Q, ZHANG G Q. A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management[J]. Applied Thermal Engineering, 2019, 148: 984-991. |
55 | TAUSEEF-UR-REHMAN, ALI H M, JANJUA M M, et al. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams[J]. International Journal of Heat and Mass Transfer, 2019, 135: 649-673. |
56 | LI M, MU B Y. Effect of different dimensional carbon materials on the properties and application of phase change materials: a review[J]. Applied Energy, 2019, 242: 695-715. |
57 | WANG W T, UMAIR M M, QIU J J, et al. Electromagnetic and solar energy conversion and storage based on Fe3O4-functionalised graphene/phase change material nanocomposites[J]. Energy Conversion and Management, 2019, 196: 1299-1305. |
58 | ALLAHBAKHSH A, ARJMAND M. Graphene-based phase change composites for energy harvesting and storage: state of the art and future prospects[J]. Carbon, 2019, 148: 441-480. |
59 | WU T, XIE N, NIU J Y, et al. Preparation of a low-temperature nanofluid phase change material: MgCl2-H2O eutectic salt solution system with multi-walled carbon nanotubes (MWCNTs)[J]. International Journal of Refrigeration, 2020, 113: 136-144. |
60 | XIE N, NIU J Y, GAO X N, et al. Fabrication and characterization of electrospun fatty acid form-stable phase change materials in the presence of copper nanoparticles[J]. International Journal of Energy Research, 2020, 44(11): 8567-8577. |
61 | CHEN P, GAO X N, WANG Y Q, et al. Metal foam embedded in SEBS/paraffin/HDPE form-stable PCMs for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2016, 149: 60-65. |
62 | CAO R R, WANG Y Z, CHEN S, et al. Multiresponsive shape-stabilized hexadecyl acrylate-grafted graphene as a phase change material with enhanced thermal and electrical conductivities[J]. ACS Applied Materials & Interfaces, 2019, 11(9): 8982-8991. |
63 | HAN D M, GUENE LOUGOU B, XU Y T, et al. Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage[J]. Applied Energy, 2020, 264: 114674. |
64 | WANG T Y, WANG S F, WU W. Experimental study on effective thermal conductivity of microcapsules based phase change composites[J]. International Journal of Heat and Mass Transfer, 2017, 109: 930-937. |
65 | AMIN M, PUTRA N, KOSASIH E A, et al. Thermal properties of beeswax/graphene phase change material as energy storage for building applications[J]. Applied Thermal Engineering, 2017, 112: 273-280. |
66 | WANG J F, XIE H Q, XIN Z, et al. Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers[J]. Solar Energy, 2010, 84(2): 339-344. |
67 | CUI W L, YUAN Y P, SUN L L, et al. Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials[J]. Renewable Energy, 2016, 99: 1029-1037. |
68 | LI T X, WU D L, HE F, et al. Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage[J]. International Journal of Heat and Mass Transfer, 2017, 115: 148-157. |
69 | LAN W, SHANG B F, WU R K, et al. Thermally-enhanced nanoencapsulated phase change materials for latent functionally thermal fluid[J]. International Journal of Thermal Sciences, 2021, 159: 106619. |
70 | HADDAD Z, IACHACHENE F, ABU-NADA E, et al. Investigation of the novelty of latent functionally thermal fluids as alternative to nanofluids in natural convective flows[J]. Scientific Reports, 2020, 10: 20257. |
71 | KARAIPEKLI A, ERDOĞAN T, BARLAK S. The stability and thermophysical properties of a thermal fluid containing surface-functionalized nanoencapsulated PCM[J]. Thermochimica Acta, 2019, 682: 178406. |
72 | ALEHOSSEINI E, JAFARI S M. Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry[J]. Trends in Food Science & Technology, 2019, 91: 116-128. |
73 | GHALAMBAZ M, CHAMKHA A J, WEN D S. Natural convective flow and heat transfer of nano-encapsulated phase change materials (NEPCMs) in a cavity[J]. International Journal of Heat and Mass Transfer, 2019, 138: 738-749. |
74 | HAJJAR A, MEHRYAN S A M, GHALAMBAZ M. Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension[J]. International Journal of Mechanical Sciences, 2020, 166: 105243. |
75 | FANG Y T, KUANG S Y, GAO X N, et al. Preparation and characterization of novel nanoencapsulated phase change materials[J]. Energy Conversion and Management, 2008, 49(12): 3704-3707. |
76 | FANG Y T, KUANG S Y, GAO X N, et al. Preparation of nanoencapsulated phase change material as latent functionally thermal fluid[J]. Journal of Physics D: Applied Physics, 2009, 42(3): 035407. |
77 | FANG Y T, YU H M, WAN W J, et al. Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials[J]. Energy Conversion and Management, 2013, 76: 430-436. |
78 | FANG Y T, ZOU T, LIANG X H, et al. Self-assembly synthesis and properties of microencapsulated n-tetradecane phase change materials with a calcium carbonate shell for cold energy storage[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3074-3080. |
79 | FANG Y T, HUANG L H, LIANG X H, et al. Facilitated synthesis and thermal performances of novel SiO2 coating Na2HPO4⋅7H2O microcapsule as phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 206: 110257. |
80 | FU W W, LIANG X H, XIE H Z, et al. Thermophysical properties of n-tetradecane@polystyrene-silica composite nanoencapsulated phase change material slurry for cold energy storage[J]. Energy and Buildings, 2017, 136: 26-32. |
81 | RODRÍGUEZ-CUMPLIDO F, PABÓN-GELVES E, CHEJNE-JANA F. Recent developments in the synthesis of microencapsulated and nanoencapsulated phase change materials[J]. Journal of Energy Storage, 2019, 24: 100821. |
82 | ZHU Y L, QIN Y S, LIANG S E, et al. Graphene/SiO2/n-octadecane nanoencapsulated phase change material with flower like morphology, high thermal conductivity, and suppressed supercooling[J]. Applied Energy, 2019, 250: 98-108. |
83 | WU S Y, MA X Y, PENG D Q, et al. The phase change property of lauric acid confined in carbon nanotubes as nano-encapsulated phase change materials[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(6): 2353-2361. |
84 | YUAN K J, WANG H C, LIU J, et al. Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance[J]. Solar Energy Materials and Solar Cells, 2015, 143: 29-37. |
85 | YUAN K J, LIU J, FANG X M, et al. Novel facile self-assembly approach to construct graphene oxide-decorated phase-change microcapsules with enhanced photo-to-thermal conversion performance[J]. Journal of Materials Chemistry A, 2018, 6(10): 4535-4543. |
86 | LIU J, CHEN L L, FANG X M, et al. Preparation of graphite nanoparticles-modified phase change microcapsules and their dispersed slurry for direct absorption solar collectors[J]. Solar Energy Materials and Solar Cells, 2017, 159: 159-166. |
87 | SAPUTRO E A, AL-SHANNAQ R, FARID M M. Performance of metal and non-metal coated phase change materials microcapsules when used in compressed air energy storage system[J]. Applied Thermal Engineering, 2019, 157: 113715. |
88 | MAITHYA O M, ZHU X Y, LI X, et al. High-energy storage graphene oxide modified phase change microcapsules from regenerated chitin Pickering emulsion for photothermal conversion[J]. Solar Energy Materials and Solar Cells, 2021, 222: 110924. |
89 | MORIMOTO T, KAWANA Y, SAEGUSA K, et al. Supercooling characteristics of phase change material particles within phase change emulsions[J]. International Journal of Refrigeration, 2019, 99: 1-7. |
90 | WANG F X, FANG X M, ZHANG Z G. Preparation of phase change material emulsions with good stability and little supercooling by using a mixed polymeric emulsifier for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 176: 381-390. |
91 | WANG F X, LING Z Y, FANG X M, et al. Optimization on the photo-thermal conversion performance of graphite nanoplatelets decorated phase change material emulsions[J]. Solar Energy Materials and Solar Cells, 2018, 186: 340-348. |
92 | WANG F X, ZHANG C, LIU J, et al. Highly stable graphite nanoparticle-dispersed phase change emulsions with little supercooling and high thermal conductivity for cold energy storage[J]. Applied Energy, 2017, 188: 97-106. |
93 | WANG F X, CAO J H, LING Z Y, et al. Experimental and simulative investigations on a phase change material nano-emulsion-based liquid cooling thermal management system for a lithium-ion battery pack[J]. Energy, 2020, 207: 118215. |
94 | CAO J H, HE Y J, FENG J X, et al. Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge[J]. Applied Energy, 2020, 279: 115808. |
95 | MARUOKA N, TSUTSUMI T, ITO A, et al. Heat release characteristics of a latent heat storage heat exchanger by scraping the solidified phase change material layer[J]. Energy, 2020, 205: 118055. |
96 | NIE B J, DU Z, ZOU B Y, et al. Performance enhancement of a phase-change-material based thermal energy storage device for air-conditioning applications[J]. Energy and Buildings, 2020, 214: 109895. |
97 | GORZIN M, HOSSEINI M J, RAHIMI M, et al. Nano-enhancement of phase change material in a shell and multi-PCM-tube heat exchanger[J]. Journal of Energy Storage, 2019, 22: 88-97. |
98 | LEE D, KANG C. A study on development of the thermal storage type plate heat exchanger including PCM layer[J]. Journal of Mechanical Science and Technology, 2019, 33(12): 6085-6093. |
99 | CHEN C X, ZHANG H, GAO X N, et al. Numerical and experimental investigation on latent thermal energy storage system with spiral coil tube and paraffin/expanded graphite composite PCM[J]. Energy Conversion and Management, 2016, 126: 889-897. |
100 | SAJAWAL M, REHMAN T U, ALI H M, et al. Experimental thermal performance analysis of finned tube-phase change material based double pass solar air heater[J]. Case Studies in Thermal Engineering, 2019, 15: 100543. |
101 | SODHI G S, JAISWAL A K, VIGNESHWARAN K, et al. Investigation of charging and discharging characteristics of a horizontal conical shell and tube latent thermal energy storage device[J]. Energy Conversion and Management, 2019, 188: 381-397. |
102 | TU R, LI J Q, HWANG Y. Study of temperature uniformity and thermal storage performances of a shell-and-tube type phase change plate[J]. International Journal of Refrigeration, 2021, 122: 69-80. |
103 | LIN W Z, WANG Q H, FANG X M, et al. Experimental and numerical investigation on the novel latent heat exchanger with paraffin/expanded graphite composite[J]. Applied Thermal Engineering, 2018, 144: 836-844. |
104 | LIN W Z, HUANG R, FANG X M, et al. Improvement of thermal performance of novel heat exchanger with latent heat storage[J]. International Journal of Heat and Mass Transfer, 2019, 140: 877-885. |
105 | ZAYED M E, ZHAO J, ELSHEIKH A H, et al. Performance augmentation of flat plate solar water collector using phase change materials and nanocomposite phase change materials: a review[J]. Process Safety and Environmental Protection, 2019, 128: 135-157. |
[1] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[2] | SHI Yu, ZHAO Yunchao, FAN Zhixuan, JIANG Dahua. Experimental study on the optimum phase change temperature of phase change roofs in hot summer and cold winter areas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4828-4836. |
[3] | WANG Yungang, JIAO Jian, DENG Shifeng, ZHAO Qinxin, SHAO Huaishuang. Experimental analysis of condensation heat transfer and synergistic desulfurization [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4230-4237. |
[4] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[5] | YANG Pengwei, YU Linzhu, WANG Fangfang, JIANG Haoxuan, ZHAO Guangjin, LI Qi, DU Mingzhe, MA Shuangchen. Application prospect, challenge and development of ammonia energy storage in new power system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4432-4446. |
[6] | QI Chenglu, ZHANG Zhongliang, WANG Mingchao, LI Yaopeng, GONG Xiaohui, SUN Peng, ZHENG Bin. Effects of built-in tube bundle arrangements on solid particle flow characteristics in heat exchangers [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2306-2314. |
[7] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[8] | XU Yuzhen, JIANG Dahua, LIU Jingtao, CHEN Pu. Preparation and properties of fly ash based phase change energy storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2595-2605. |
[9] | ZHU Tianyu, SUN Lin, REN Chao, LUO Xionglin. Sliding window analysis and slow-release margin optimal control for heat exchanger networks based on full cycle sustainable energy saving [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1195-1205. |
[10] | SUN Chongzheng, FAN Xin, LI Yuxing, XU Jie, HAN Hui, LIU Liang. Coupling characteristics of hydrogen heat transfer and normal-parahydrogen conversion in offshore porous media channels [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1281-1290. |
[11] | WU Weixiong, XIE Shiwei, MA Ruixin, LIU Jizhen, WANG Shuangfeng, RAO Zhonghao. Research progress of solid-liquid/gas-liquid multiphase coupling thermal control technology [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1143-1154. |
[12] | HAO Xubo, NIU Baolian, GUO Haotian, XU Xianghe, ZHANG Zhongbin, LI Yinglin. Modification of microencapsulated phase change material and its utilization in photothermal conversion [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 854-871. |
[13] | ZHAO Xipo, BIAN Wuxun, RAN Baoqing, LIU Jinchao, YIN Shaoding, SUN Yiming. Preparation and properties of paraffin solid-solid phase change materials [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 897-906. |
[14] | LIU Junkang, WANG Hongchao, XIONG Tong, YAN Gang, GUO Ning, LIU Rui. Review on research status of circuit optimization of finned tube heat exchanger in heat pump and air conditioning [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 107-117. |
[15] | SUN Yiming, RAN Baoqing, BIAN Wuxun, LIU Jinchao, YIN Shaoding, ZHAO Xipo. Preparation and process optimization of polypropylene wax solid-solid phase change material [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 336-345. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |