Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (6): 3143-3150.DOI: 10.16085/j.issn.1000-6613.2020-1344
• Energy processes and technology • Previous Articles Next Articles
SHAO Weiqiang(), LIANG Haifeng(), ZHANG Xiyan, ZHANG Hua
Received:
2020-07-13
Revised:
2020-11-03
Online:
2021-06-22
Published:
2021-06-06
Contact:
LIANG Haifeng
通讯作者:
梁海峰
作者简介:
邵伟强(1996—),男,硕士研究生,研究方向为水合物法分离低浓度煤层气。E-mail:基金资助:
CLC Number:
SHAO Weiqiang, LIANG Haifeng, ZHANG Xiyan, ZHANG Hua. Research progress of purification of low-concentration coal-bed methane via hydrate method[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3143-3150.
邵伟强, 梁海峰, 张锡彦, 张华. 水合物法提纯低浓度煤层气的研究进展[J]. 化工进展, 2021, 40(6): 3143-3150.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1344
LCCBM的提纯技术 | 原理 | 分析 |
---|---|---|
变压吸附法 | 利用固体吸附剂对LCCBM中CH4的选择性吸附作用来提纯LCCBM中的CH4 | 技术较成熟、能耗低、工艺流程简单、操作灵活,但是对于吸附剂研制的技术要求很高 |
低温精馏法 | 利用LCCBM中CH4和N2两种气体沸点之间的差异,将混合气液化后进行分离 | 技术较为成熟,产品中CH4的纯度高、回收率高,但操作条件要求高、设备投资大、危险系数也较高 |
膜分离法 | 利用CH4和N2在压力的推动下,通过溶解、扩散及脱附等步骤产生CH4和N2透过膜的传递速率不同来实现提纯 | 分离效率高、设备简单、能耗低、操作简单、可持续运行,但是膜选择性低、成本高、力学性能差 |
水合物法 | 利用气体与水在低温高压条件下形成水合物时CH4优先于N2包埋在水合物空腔中,从而实现混合气体的分离 | 技术安全、高效、节能、压力损失小、工业试验流程短,但是往往面临着分离效率不高、产品纯度较低等缺陷 |
LCCBM的提纯技术 | 原理 | 分析 |
---|---|---|
变压吸附法 | 利用固体吸附剂对LCCBM中CH4的选择性吸附作用来提纯LCCBM中的CH4 | 技术较成熟、能耗低、工艺流程简单、操作灵活,但是对于吸附剂研制的技术要求很高 |
低温精馏法 | 利用LCCBM中CH4和N2两种气体沸点之间的差异,将混合气液化后进行分离 | 技术较为成熟,产品中CH4的纯度高、回收率高,但操作条件要求高、设备投资大、危险系数也较高 |
膜分离法 | 利用CH4和N2在压力的推动下,通过溶解、扩散及脱附等步骤产生CH4和N2透过膜的传递速率不同来实现提纯 | 分离效率高、设备简单、能耗低、操作简单、可持续运行,但是膜选择性低、成本高、力学性能差 |
水合物法 | 利用气体与水在低温高压条件下形成水合物时CH4优先于N2包埋在水合物空腔中,从而实现混合气体的分离 | 技术安全、高效、节能、压力损失小、工业试验流程短,但是往往面临着分离效率不高、产品纯度较低等缺陷 |
1 | BIBLER C J, MARSHALL J S, PILCHER R C. Status of worldwide coal mine methane emissions and use[J]. Int. J. Coal Geol., 1998, 35(1/2/3/4): 283-310. |
2 | 朱耀剑, 梁海峰, 车雯, 等. 基于水合物法浓缩低浓度煤层气的研究进展[J]. 现代化工, 2013, 33(11): 31-35. |
ZHU Y J, LIANG H F, CHE W, et al. Progress of condensation of low-concentration coal-bed methane based on hydrate-based[J]. Modern Chemical Industry, 2013, 33(11):31-35. | |
3 | JIANG K, ZHOU S Y, CHEN X K, et al. Research status and progress of hydrate gas separation technology[J]. Nature Gas Chemical Industry, 2018, 43(3): 121-126. |
4 | 孙栋军. 水合物法提纯低浓度煤层气的实验研究[D]. 重庆: 重庆大学, 2015. |
SUN D J. Experimental study on the purification of low-concentration coal mine gas using gas hydrate formation[D]. Chongqing: Chongqing University, 2015. | |
5 | WAALS J H VAN DER. Clathrate solutions[J]. Adv. Chem. Phys., 1959, 2: 1-58. |
6 | PARRISH W R, PRAUSNITZ J M. Dissociation pressures of gas hydrates formed by gas mixtures[J]. Industrial & Engineering Chemistry Process Design & Development, 1972, 11(1): 26-35. |
7 | DU Y, GUO T M. Prediction of hydrate formation for systems containing methanol[J]. Chemical Engineering Science, 1990, 45(4): 893-900. |
8 | CHEN G J, GUO T M. Thermodynamic modeling of hydrate formation based on new concepts[J]. Fluid Phase Equilibria, 1996, 122(1/2): 43-65. |
9 | 梁海峰, 朱耀剑, 赵阳升, 等. 水逸度模型预测THF添加剂体系下气体水合物相平衡[J]. 化工进展, 2016, 35(3): 700-705. |
LIANG H F, ZHU Y J, ZHAO Y S, et al. Phase equilibrium study of gas mixtures hydrate formation with additives THF based on water fugacity model[J]. Chemical Industry and Engineering Progress, 2016, 35(3): 700-705. | |
10 | 朱耀剑. 水合物法分离低浓度煤层气热力学模型研究[D]. 太原: 太原理工大学, 2014. |
ZHU Y J. Thermodynamic model study of hydrate formation for low-concentration coal-bed methane[D]. Taiyuan: Taiyuan University of Technology, 2014. | |
11 | 郭迎, 梁海峰, 关钰, 等. 季铵盐对煤层气水合物相平衡条件的影响[J]. 过程工程学报, 2017, 17(4): 874-878. |
GUO Y, LIANG H F, GUAN Y, et al. Effect of quaternary ammonium salts on phase equilibrium condition of coal mine methane gas hydrate[J]. Journal of Process Engineering, 2017,17(4): 874-878. | |
12 | ALADKO L, DYADIN Y A, RODIONOVA T V, et al. Clathrate hydrates of tetrabutylammonium and tetra-isoamyl-ammonium halides[J]. Journal of Structural Chemistry, 2002, 43(6): 990-994. |
13 | SHI L L, LIANG D Q, et al. Phase equilibria of double semi-clathrate hydrates formed with tetra-amyl-ammonium bromide plus CH4, CO2, or N2[J]. Journal of Chemical & Engineering Data, 2015, 60(9): 2749-2755. |
14 | 王山榕. 多孔介质内水合物成核诱导时间与生长动力学研究[D]. 大连: 大连理工大学, 2019. |
WANG S R. Studies on nucleation induction time and growth kinetics of hydrate formation in porous media[D]. Dalian: Dalian University of Technology, 2019. | |
15 | 王山榕, 刘卫国, 杨明军, 等. 多孔介质内甲烷水合物生成动力学研究[J]. 热科学与技术, 2019, 18(3): 173-178. |
WANG S R, LIU W G, SUN M J, et al. Kinetics of methane hydrate formation in porous media[J]. Journal of Thermal Science and Technology, 2019, 18(3): 173-178. | |
16 | 芦文浩, 梁海峰, 王帅,等. 环状化合物-甲烷水合物稳定性的分子模拟[J]. 天然气化工(C1化学与化工), 2019, 44(1): 61-65, 70. |
LU W H, LIANG H F, WANG S, et al. Molecular simulation of the stability of ring compounds-methane clathrate hydrate[J]. Natural Gas Chemical Industry, 2019, 44(1): 61-65, 70. | |
17 | 贾菊, 梁海峰, 郭栋,等. 环状促进剂对煤层气水合物稳定性的影响[J]. 现代化工, 2020, 40(S1): 211-215. |
JIA J, LIANG H F, GUO D, et al. Impact of ring accelerator on stability of coalbed methane hydrate[J]. Modern Chemical Industry, 2020, 40(S1): 211-215. | |
18 | 董巧北. 有序纳米空间内水合物法强化煤层气N2/CH4分离[D]. 天津: 天津大学, 2015. |
DONG Q B. Studies on hydrate separation of N2/CH4 in ordered nano-space[D]. Tianjing: Tianjing University, 2015. | |
19 | ZHONG D L, Wang W C, ZOU Z L, et al. Investigation on methane recovery from low-concentration coal mine gas by tetra- n -butyl ammonium chloride semi-clathrate hydrate formation[J]. Applied Energy, 2018, 227(1): 686-693. |
20 | YAN J, LU Y Y, ZHONG D L, et al. Enhanced methane recovery from low-concentration coalbed methane by gas hydrate formation in graphite nanofluids[J]. Energy, 2019, 180: 728-736. |
21 | 曾大龙, 王传磊, 唐建峰, 等. 水合物法气体分离添加剂研究进展[J]. 油气储运, 2013, 32(2): 115-120. |
ZENG D L, WANG C L, TANG J F, et al. Progress in research of gas separation additives of hydrate[J]. Gas Storage and Transportation, 2013, 32(2): 115-120. | |
22 | DASHTI H, YEW L Z, LOU X. Recent advances in gas hydrate-based CO2 capture[J]. Journal of Natural Gas Science and Engineering, 2015, 23:195-207. |
23 | 赵建忠, 赵阳升, 石定贤. THF溶液水合物技术提纯含氧煤层气的实验[J]. 煤炭学报, 2008, 33(12): 1419-1424. |
ZHAO J Z, ZHAO Y S, SHI D X. Experiment on methane concentration from oxygen containing coal bed gas by THF solution hydrate formation[J]. Journal of China Coal Society, 2008, 33(12): 1419-1424. | |
24 | ZHANG B, WU Q. Thermodynamic promotion of tetrahydrofuran on methane separation from low-concentration coal mine methane based on hydrate[J]. Energy & Fuels, 2010, 24(4): 2530-2535. |
25 | ZHONG D L, YE Y, YANG C, et al. Experimental investigation of methane separation from low-concentration coal mine gas (CH4/N2/O2) by tetra-n-butyl ammonium bromide semi-clathrate hydrate crystallization[J]. Industrial & Engineering Chemistry Research, 2012, 51(45): 14806-14813. |
26 | 钟栋梁, 何双毅, 严瑾, 等. 低甲烷浓度煤层气的水合物法提纯实验[J]. 天然气工业, 2014, 34(8): 123-128. |
ZHONG D L, HE S Y, YAN J, et al. An experimental study of using hydrate formation to enhance the methane recovery of low-concentration coal bed methane [J]. Nature Gas Industry, 2014, 34(8): 123-128. | |
27 | ZHONG D L, DING K, YAN J, et al. Influence of cyclopentane and SDS on methane separation from coal mine gas by hydrate crystallization[J]. Energy & Fuels, 2013, 27(12): 7252-7258. |
28 | 吕秋楠, 李小森, 李刚, 等. 水合物法分离低浓度煤层气中的甲烷[J]. 过程工程学报, 2019, 19(6): 1129-1134. |
LYU Q N, LI X S, LI G, et al. Separation of methane from low concentration coal bed methane by hydrate-based process[J]. The Chinese Journal of Process Engineering, 2019, 19(6): 1129-1134. | |
29 | CAI J, XU C G, CHEN Z Y, et al. Recovery of methane from coal-bed methane gas mixture via hydrate-based methane separation method by adding anionic surfactants[J]. Energy Sources Part A: Recovery, Utilization & Environmental Effects, 2018, 40(9): 11019-1026. |
30 | ZHANG Q, WU Q, ZHANG H, et al. Effect of montmorillonite on hydrate-based methane separation from mine gas[J]. Journal of Central South University, 2018, 25(1): 38-50. |
31 | KUMAR A, VELUSWAMY H P, KUMAR R, et al. Kinetic promotion of mixed methane-THF hydrate by additives: opportune to energy storage[J]. Energy Procedia, 2019, 158: 5287-5292. |
32 | SUN Q, CHEN B, LI Y, et al. Enhanced separation of coal bed methane via bio-clathrates formation[J]. Fuel, 2019, 243: 10-14. |
33 | KIM N-J, S-S PARK. Study on methane hydrate formation using ultrasonic waves[J]. Journal of Industrial & Engineering Chemistry, 2013, 19(5): 1668-1672. |
34 | FAKHARIAN H, GANJI H, NADERI FAR A, et al. Potato starch as methane hydrate promoter[J]. Fuel, 2012, 94: 356-360. |
35 | 杨西萍, 刘煌, 李赟. 水合物法分离混合物技术研究进展[J]. 化工学报, 2017, 68(3): 831-840. |
YANG X P, LIU H, LI Y. Research progress of separation technology based on hydrate formation[J]. CIESC Journal, 2017, 68(3): 831-840. | |
36 | ZHONG D L, DING K, LU Y Y, et al. Methane recovery from coal mine gas using hydrate formation in water-in-oil emulsions [J]. Applied Energy, 2016, 162: 1619-1626. |
37 | 丁坤. 气体水合物法分离煤层气及IGCC燃气的热力学与动力学特性研究[D]. 重庆: 重庆大学, 2018. |
DING K. Study on the thermodynamic and kinetic characteristics of hydrate based gas separation for coal mine gas and IGCC gas[D]. Chongqing: Chongqing University, 2018. | |
38 | FAN S S, YANG L, WANG Y H, et al. Rapid and high capacity methane storage in clathrate hydrates using surfactant dry solution[J]. Chemical Engineering Science, 2014, 106: 53-59. |
39 | ZHONG D L, SUN D J, LU Y Y, et al. Adsorption–hydrate hybrid process for methane separation from a CH4/N2/O2 gas mixture using pulverized coal particles[J]. Industrial & Engineering Chemistry Research, 2014, 53(40): 15738-15746. |
40 | 苏向东. 多孔介质+THF+TBAB体系煤层气水合物生成实验及理论研究[D]. 太原: 太原理工大学, 2016. |
SU X D. Experiment and theoretical research for formation of coal-bed methane hydrate in porous media +THF+TBAB system[D]. Taiyuan: Taiyuan University of Technology, 2016. | |
41 | LI J B, ZHONG D L, YAN J. Improving gas hydrate-based CH4 separation from low-concentration coalbed methane by graphene oxide nanofluids[J]. Journal of Natural Gas Science and Engineering, 2020, 76: 103212. |
42 | ZHONG D L, LU Y Y, SUN D J, et al. Performance evaluation of methane separation from coal mine gas by gas hydrate formation in a stirred reactor and in a fixed bed of silica sand[J]. Fuel, 2015, 143: 586-594. |
43 | 陈广印, 孙强, 郭绪强, 等. 水合物法连续分离煤层气实验研究[J]. 高校化学工程学报, 2013, 27(4): 561-566. |
CHEN G Y, SUN Q, GUO X Q, et al. Experimental study on the continuous separation process of coal bed methane via forming hydrate[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(4): 561-566. | |
44 | 孙兆虎, 程逵炜, 吴剑峰. 利用水合物法回收低浓度煤层气中甲烷的方法及装置: CN103160351A[P]. 2013-06-19. |
SUN Z H, CHENG K W, WU J F. Method and device used for utilizing hydrate method to recover methane in low concentration coal bed gas: CN103160351A[P]. 2013-06-19. | |
45 | LUCIA B, CASTELLANI B, ROSSI F, et al. Experimental investigations on scaled-up methane hydrate production with surfactant promotion: energy considerations[J]. Journal of Petroleum Science & Engineering, 2014, 120: 187-193. |
46 | XIAO P, YANG X M, SUN C Y, et al. Enhancing methane hydrate formation in bulk water using vertical reciprocating impact[J]. Chemical Engineering Journal, 2018, 336: 649-658. |
47 | 白净, 李凌乾, 刘风莉, 等. 机械扰动强化气体水合物快速生成研究进展[J]. 化工进展, 2018, 37(1): 60-67. |
BAI J, LI L Q, LIU F L, et al. Progress of rapid formation of gas hydrate by mechanical disturbance[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 60-67. |
[1] | SHENG Weiwu, CHENG Yongpan, CHEN Qiang, LI Xiaoting, WEI Jia, LI Linge, CHEN Xianfeng. Operating condition analysis of the microbubble and microdroplet dual-enhanced desulfurization reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 142-147. |
[2] | HUANG Yiping, LI Ting, ZHENG Longyun, QI Ao, CHEN Zhenglin, SHI Tianhao, ZHANG Xinyu, GUO Kai, HU Meng, NI Zeyu, LIU Hui, XIA Miao, ZHU Kai, LIU Chunjiang. Hydrodynamics and mass transfer characteristics of a three-stage internal loop airlift reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 175-188. |
[3] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[4] | ZHAO Jingchao, TAN Ming. Effect of surfactants on the reduction of industrial saline wastewater by electrodialysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 529-535. |
[5] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[6] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[7] | WANG Jinhang, HE Yong, SHI Lingli, LONG Zhen, LIANG Deqing. Progress of gas hydrate anti-agglomerants [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4587-4602. |
[8] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[9] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[10] | SHI Tianxi, SHI Yonghui, WU Xinying, ZHANG Yihao, QIN Zhe, ZHAO Chunxia, LU Da. Effects of Fe2+ on the performance of Anammox EGSB reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5003-5010. |
[11] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[12] | DENG Jian, WANG Kai, LUO Guangsheng. Development and consideration of adiabatic continuous microreaction technology for safe production of nitro compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3923-3925. |
[13] | LI Dong, WANG Qianqian, ZHANG Liang, LI Jun, FU Qian, ZHU Xun, LIAO Qiang. Performance of series stack of non-aqueous nano slurry thermally regenerative flow batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4238-4246. |
[14] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[15] | LU Shaojie, LIU Jia, JI Qianzhu, LI Ping, HAN Yueyang, TAO Min, LIANG Wenjun. Preparation of diatomaceous earth-based composite filler and its xylene removal performance by a biotrickling filter [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3884-3892. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |