1 |
李旭东. 补给水中有机磷在循环冷却系统内迁移转化规律的研究[D]. 北京: 华北电力大学, 2019.
|
|
LI Xudong. Migration and transformation of organic phosphorus in make-up water of circulating cooling system[D]. Beijing: North China Electric Power University, 2019.
|
2 |
ROTT Edurd, STEINMETZ Heidrun, METZGER Jorg W, Organophosphonates: a review on environmental relevance, biodegradability and removal in wastewater treatment plants[J]. Science of the Total Environment, 2018, 615: 1176-1191.
|
3 |
MONBALLIU Annick, DESMIDT Evelyn, GHYSELBRECHT Karel, et al. Phosphate recovery as hydroxyapatite from nitrified UASB effluent at neutral pH in a CSTR[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4413-4422.
|
4 |
张蕊. MAP和HAP结晶法除磷工艺研究[D]. 北京: 北京市环境保护科学研究院, 2012.
|
|
ZHANG Rui. Study on the process of MAP and HAP crystallization for phosphorus removal[D]. Beijing: Beijing Municipa Research Institute of Environmental Protection, 2012.
|
5 |
LIND Bobertil, BAN Zsofia, BYDEN Stenfan. Nutrient recovery from human urine by struvite crystallization with ammonia adsorption on zeolite and wollastonite[J]. Bioresource Technology, 2000, 73(2): 169-174.
|
6 |
郭杰. 诱导结晶法处理含磷废水[D]. 长沙: 湖南大学, 2006.
|
|
GUO Jie. Phosphorus removal from waste water by induced crystallization[D]. Changsha: Hunan University, 2006.
|
7 |
缪幸福. HAP法回收废水中磷的反应条件优化控制研究[D]. 芜湖: 安徽工程大学, 2012.
|
|
MIAO Xingfu. The optimal control study of using hydroxyapatite (HAP) method to recover phosphorus in wastewater in order to find the best optimum reaction conditions[D]. Wuhu: Anhui Polytechnic University, 2012.
|
8 |
MOREIRA Francisca C, BOAVENTURA Rui A R, BRILLAS Enric, et al. Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters[J]. Applied Catalysis B: Environmental, 2017, 202: 217-261.
|
9 |
LEI Yang, SONG Bingnan, WRIJDEN Renata D VAN DER. et al. Electrochemical induced calcium phosphate precipitation: importance of local pH[J]. Environmental Science & Technology, 2017, 51(19): 11156-11164.
|
10 |
SU Chunming, PULS Robert W P. Arsenate and arsenite removal by zerovalent iron: effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride[J]. Environmental Science & Technology, 2001, 35(22): 4562-4568.
|
11 |
JIANG Bo, NIU Qinhe, LI Chao, et al. Outstanding performance of electro-Fenton process for efficient decontamination of Cr(Ⅲ) complexes via alkaline precipitation with no accumulation of Cr(Ⅵ): important roles of iron species[J]. Applied Catalysis B: Environmental, 2020, 272: 119002.
|
12 |
陈小光, 张萌, 厉帅, 等. 磷酸钙盐结晶除磷工艺性能研究[J]. 环境工程学报, 2013, 7(7): 2552-2556.
|
|
CHEN Xiaoguang, ZHANG Meng, LI Shuai, et al. Performance of calcium phosphates crystallization process for phosphorus removal[J]. Chinese Journal of Environmental Engineering, 2013, 7(7): 2552-2556.
|
13 |
TRELLU Clément, CHAPLIN Brian P, COETSIER Clémence, et al. Electro-oxidation of organic pollutants by reactive electrochemical membranes[J]. Chemosphere, 2018, 208: 159-175.
|
14 |
VASENKO Liubov, QU Haiyan. Enhancing the recovery of calcium phosphates from wastewater treatment systems through hybrid process of oxidation and crystallization[J]. Journal of Environmental Chemical Engineering, 2019, 7(1): 102828.
|