Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (5): 2774-2783.DOI: 10.16085/j.issn.1000-6613.2020-1168
• Resources and environmental engineering • Previous Articles Next Articles
WU Jianping1(), JIN Ziheng1, CHANG Yingfu2, ZHANG Jin3, JIANG Xia1()
Received:
2020-06-23
Online:
2021-05-24
Published:
2021-05-06
Contact:
JIANG Xia
吴见平1(), 靳紫恒1, 长英夫2, 张进3, 江霞1()
通讯作者:
江霞
作者简介:
吴见平(1997—),男,硕士研究生,研究方向为大气硫污染物控制技术与应用。E-mail:基金资助:
CLC Number:
WU Jianping, JIN Ziheng, CHANG Yingfu, ZHANG Jin, JIANG Xia. Biological deodorization technologies in wastewater treatment plant and their application[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2774-2783.
吴见平, 靳紫恒, 长英夫, 张进, 江霞. 污水处理厂生物除臭技术及其应用进展[J]. 化工进展, 2021, 40(5): 2774-2783.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1168
技术 | 优点 | 缺点 | 适用范围 |
---|---|---|---|
土壤生物法 | 除臭高效,环境影响小,成本低 | 占地面积大,易出现土壤板结、床层堵塞和气流短路等问题 | 恶臭污染物浓度低和气量小的恶臭气体 |
生物滤池法 | 反应器易启动,除臭高效,成本较低,运行稳定性好 | 占地面积较大,床层易堵塞 | 恶臭污染物浓度低和进气浓度变化小的恶臭气体 |
生物滴滤池法 | 操作条件易控制,单位体积填料的微生物量高,除臭高效,运行稳定性好,抗冲击负荷能力强 | 反应器启动过程复杂,需外加营养物质,成本较高 | 含中低浓度恶臭污染物的恶臭气体 |
生物洗涤法 | 停留时间短,气体压力损失小,占地面积小,不存在床层堵塞问题,操作条件易控制 | 成本高,操作复杂,对难溶于水的恶臭污染物去除效果差,污泥需处理,单独使用时难以满足排放标准 | 气量大、其中一种或一类恶臭污染物浓度高和其他恶臭污染物浓度低的恶臭气体 |
活性污泥扩散法 | 占地面积小,操作简单,除臭高效,成本低,环境影响小 | 对曝气装置要求高,恶臭气体气量大于曝气池所需曝气量时应用受限 | 恶臭污染物浓度低的恶臭气体 |
活性污泥回流法 | 基本不占地,操作简单,除臭高效,成本低,有助于避免污泥丝状膨胀 | 除臭效果受污泥回流比影响较大,曝气沉砂池运行负荷增大 | 污水处理系统源头减排恶臭气体 |
氨氧化产物回流法 | 基本不占地,操作简单,除臭高效,成本低 | 可能会对后续脱氮有影响 | 污水处理系统源头减排恶臭气体 |
技术 | 优点 | 缺点 | 适用范围 |
---|---|---|---|
土壤生物法 | 除臭高效,环境影响小,成本低 | 占地面积大,易出现土壤板结、床层堵塞和气流短路等问题 | 恶臭污染物浓度低和气量小的恶臭气体 |
生物滤池法 | 反应器易启动,除臭高效,成本较低,运行稳定性好 | 占地面积较大,床层易堵塞 | 恶臭污染物浓度低和进气浓度变化小的恶臭气体 |
生物滴滤池法 | 操作条件易控制,单位体积填料的微生物量高,除臭高效,运行稳定性好,抗冲击负荷能力强 | 反应器启动过程复杂,需外加营养物质,成本较高 | 含中低浓度恶臭污染物的恶臭气体 |
生物洗涤法 | 停留时间短,气体压力损失小,占地面积小,不存在床层堵塞问题,操作条件易控制 | 成本高,操作复杂,对难溶于水的恶臭污染物去除效果差,污泥需处理,单独使用时难以满足排放标准 | 气量大、其中一种或一类恶臭污染物浓度高和其他恶臭污染物浓度低的恶臭气体 |
活性污泥扩散法 | 占地面积小,操作简单,除臭高效,成本低,环境影响小 | 对曝气装置要求高,恶臭气体气量大于曝气池所需曝气量时应用受限 | 恶臭污染物浓度低的恶臭气体 |
活性污泥回流法 | 基本不占地,操作简单,除臭高效,成本低,有助于避免污泥丝状膨胀 | 除臭效果受污泥回流比影响较大,曝气沉砂池运行负荷增大 | 污水处理系统源头减排恶臭气体 |
氨氧化产物回流法 | 基本不占地,操作简单,除臭高效,成本低 | 可能会对后续脱氮有影响 | 污水处理系统源头减排恶臭气体 |
单位名称 | 除臭工艺及主要特点 | 总设计规模 /m3·h-1 | 主要恶臭污染物 | 处理效果 | 文献年份 |
---|---|---|---|---|---|
广州市大坦沙污水厂[ | 加盖密闭+土壤生物法 | 29000 | H2S | 设计进气浓度(mg/m3):H2S为30;达标排放 | 2007 |
集美污水处理厂一期工程[ | 生物滤池法(火山岩为主的多种级配的有机和无机混合填料) | 3600 | H2S、NH3 | 进气浓度(mg/m3):H2S为10~40,NH3为5~10,臭气浓度为2000~8000(相对浓度);达标排放 | 2011 |
杭州市七格污水处理厂一期、二期工程[ | 土壤生物法 | — | H2S、NH3 | 去除率(%):H2S>99.5,臭气浓度>98.0,NH3>55.2;达标排放 | 2012 |
胜利油田沙营污水处理厂[ | 加盖密闭+生物洗涤(空心球填充海绵填料)+生物滤池法(有机木料) | 39000 | H2S、CH3SH、CS2 | 厂界无明显恶臭气味,达标排放 | 2012 |
某炼油污水处理场[ | 生物洗涤法+两级生物滴滤法 | 15000 | H2S、NH3、CH3SH、VOCs | 进气浓度(mg/m3):H2S为7.86,NH3为12.26,CH3SH为3.20,VOCs为629.80,臭气浓度为3095(相对浓度);达标排放 | 2013 |
宁波市新周污水处理厂一期工程[ | 加盖密闭+生物滤池法 | 133000 | — | 达标排放 | 2014 |
河南某畜禽屠宰污水厂[ | 密闭加盖+生物滤池法(以火山岩为主的复合填料) | 20000 | — | 厂界无明显恶臭气味,达标排放 | 2015 |
某化工污水处理车间[ | 化学洗涤法(碱液)+多级生物滴滤池法+化学洗涤法(含氧化剂的溶液) | — | 苯乙烯、H2S、NH3 | 进气浓度(mg/m3):苯乙烯为6.8~7.2,H2S为0.8~0.9,NH3为1.1~1.4,VOCs为629.8,臭气浓度为880~920(相对浓度);达标排放 | 2015 |
温州市中心片污水处理厂[ | 分区治理:密闭加盖+生物滴滤池法 | 46000 | — | 设计进气浓度(mg/m3):H2S为20,NH3为15,臭气浓度为3000(相对浓度);达标排放 | 2015 |
广州市某污水处理厂泵站[ | 等离子体法+生物滴滤池法(陶粒) | 10000 | TVOC、H2S、NH3、CH3SH | 进气浓度(mg/m3):TVOC为8.77,H2S为0.61,CH3SH为0.09,NH3为4.49,臭气为1922.33(相对浓度);达标排放 | 2016 |
天津市张贵庄污水处理厂[ | 分区治理:全过程除臭工艺、离子法、生物滤池法 | 60000 | NH3 | 达标排放 | 2017 |
常州市某印染园区内的集中式污水处理厂[ | 密闭加盖+生物滤池法(聚氨酯填料) | 95000 | H2S、NH3 | 达标排放 | 2017 |
某生活污水处理厂[ | 生物滴滤池法(炭质填料) | 16000 | H2S | 进气浓度(mg/m3):H2S为100~180;出气浓度(mg/m3):H2S为0~1.5;达标排放 | 2019 |
李村河污水处理厂[ | 分区治理:全过程除臭工艺、密闭加盖+等离子体法 | — | H2S、NH3 | 达标排放 | 2019 |
石洞口污水处理厂[ | 分区治理:密闭加盖+生物滤池法+活性炭吸附法 | 240000 | H2S、CH3SH、NH3 | 达标排放 | 2019 |
杭州市七格污水厂三期工程[ | 分区治理:生物滴滤法(泡沫填料)+活性炭吸附法+生物滴滤法(椰壳活性炭填料) | 236000 | H2S、NH3 | 达标排放 | 2020 |
单位名称 | 除臭工艺及主要特点 | 总设计规模 /m3·h-1 | 主要恶臭污染物 | 处理效果 | 文献年份 |
---|---|---|---|---|---|
广州市大坦沙污水厂[ | 加盖密闭+土壤生物法 | 29000 | H2S | 设计进气浓度(mg/m3):H2S为30;达标排放 | 2007 |
集美污水处理厂一期工程[ | 生物滤池法(火山岩为主的多种级配的有机和无机混合填料) | 3600 | H2S、NH3 | 进气浓度(mg/m3):H2S为10~40,NH3为5~10,臭气浓度为2000~8000(相对浓度);达标排放 | 2011 |
杭州市七格污水处理厂一期、二期工程[ | 土壤生物法 | — | H2S、NH3 | 去除率(%):H2S>99.5,臭气浓度>98.0,NH3>55.2;达标排放 | 2012 |
胜利油田沙营污水处理厂[ | 加盖密闭+生物洗涤(空心球填充海绵填料)+生物滤池法(有机木料) | 39000 | H2S、CH3SH、CS2 | 厂界无明显恶臭气味,达标排放 | 2012 |
某炼油污水处理场[ | 生物洗涤法+两级生物滴滤法 | 15000 | H2S、NH3、CH3SH、VOCs | 进气浓度(mg/m3):H2S为7.86,NH3为12.26,CH3SH为3.20,VOCs为629.80,臭气浓度为3095(相对浓度);达标排放 | 2013 |
宁波市新周污水处理厂一期工程[ | 加盖密闭+生物滤池法 | 133000 | — | 达标排放 | 2014 |
河南某畜禽屠宰污水厂[ | 密闭加盖+生物滤池法(以火山岩为主的复合填料) | 20000 | — | 厂界无明显恶臭气味,达标排放 | 2015 |
某化工污水处理车间[ | 化学洗涤法(碱液)+多级生物滴滤池法+化学洗涤法(含氧化剂的溶液) | — | 苯乙烯、H2S、NH3 | 进气浓度(mg/m3):苯乙烯为6.8~7.2,H2S为0.8~0.9,NH3为1.1~1.4,VOCs为629.8,臭气浓度为880~920(相对浓度);达标排放 | 2015 |
温州市中心片污水处理厂[ | 分区治理:密闭加盖+生物滴滤池法 | 46000 | — | 设计进气浓度(mg/m3):H2S为20,NH3为15,臭气浓度为3000(相对浓度);达标排放 | 2015 |
广州市某污水处理厂泵站[ | 等离子体法+生物滴滤池法(陶粒) | 10000 | TVOC、H2S、NH3、CH3SH | 进气浓度(mg/m3):TVOC为8.77,H2S为0.61,CH3SH为0.09,NH3为4.49,臭气为1922.33(相对浓度);达标排放 | 2016 |
天津市张贵庄污水处理厂[ | 分区治理:全过程除臭工艺、离子法、生物滤池法 | 60000 | NH3 | 达标排放 | 2017 |
常州市某印染园区内的集中式污水处理厂[ | 密闭加盖+生物滤池法(聚氨酯填料) | 95000 | H2S、NH3 | 达标排放 | 2017 |
某生活污水处理厂[ | 生物滴滤池法(炭质填料) | 16000 | H2S | 进气浓度(mg/m3):H2S为100~180;出气浓度(mg/m3):H2S为0~1.5;达标排放 | 2019 |
李村河污水处理厂[ | 分区治理:全过程除臭工艺、密闭加盖+等离子体法 | — | H2S、NH3 | 达标排放 | 2019 |
石洞口污水处理厂[ | 分区治理:密闭加盖+生物滤池法+活性炭吸附法 | 240000 | H2S、CH3SH、NH3 | 达标排放 | 2019 |
杭州市七格污水厂三期工程[ | 分区治理:生物滴滤法(泡沫填料)+活性炭吸附法+生物滴滤法(椰壳活性炭填料) | 236000 | H2S、NH3 | 达标排放 | 2020 |
1 | JIANG Guangming, MELDER Denham, KELLER Jurg, et al. Odor emissions from domestic wastewater: a review[J]. Critical Reviews in Environmental Science and Technology, 2017, 47(17): 1581-1611. |
2 | 王灿, 胡洪营, 席劲瑛. 城市污水处理厂恶臭污染及其评价体系[J]. 给水排水, 2005, 31(9): 15-19. |
WANG Can, HU Hongying, XI Jinying. Odor pollution and evaluation system in municipal wastewater treatment plant[J]. Water & Wastewater Engineering, 2005, 31(9): 15-19. | |
3 | 朱洁, 曹晶, 陈和谦. 上海市城镇污水厂现状及提标改造潜力分析[J]. 中国给水排水, 2018, 34(12): 14-19. |
ZHU Jie, CAO Jing, CHEN Heqian. Analysis of current situation and potential evaluation of upgrading and reconstruction of municipal wastewater treatment plant in Shanghai[J]. China Water & Wastewater, 2018, 34(12): 14-19. | |
4 | REN Baiming, ZHAO Yaqian, LYCZKO Nathalie, et al. Current status and outlook of odor removal technologies in wastewater treatment plant[J]. Waste and Biomass Valorization, 2019, 10(6): 1443-1458. |
5 | 沈东平, 方卫, 张甜甜. 城市污水厂除臭技术的应用综述[J]. 微生物学通报, 2009, 36(6): 887-891. |
SHEN Dongping, FANG Wei, ZHANG Tiantian. A review on application of odor removal technology in municipal wastewater treatment plants[J]. Microbiology, 2009, 36(6): 887-891. | |
6 | SHENG Yanqing, CHEN Fanzhong, WANG Xinming, et al. Odorous volatile organic sulfides in wastewater treatment plants in Guangzhou, China[J]. Water Environment Research, 2008, 80(4): 324-330. |
7 | WANI A H, BRANION R M R, LAU A K. Biofiltration: a promising and cost-effective control technology for odors, VOCs and air toxics[J]. Journal of Environmental Science and Health, part A, 1997, 32(7): 2027-2055. |
8 | 陈敏, 杨有泉, 邓素芳, 等. 土壤生物过滤去除畜禽养殖臭气[J]. 环境工程学报, 2013, 7(3): 1053-1058. |
CHEN Min, YANG Youquan, DENG Sufang, et al. Odor removal from livestock and poultry by soil bio-filtration[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 1053-1058. | |
57 | ZHANG Lili, GUO Hongfeng, YAN Guoqi, et al. Operation effect of biological deodorization system in Qige sewage treatment plant (Phase Ⅲ Project)[J]. China Water & Wastewater, 2020, 36(1): 69-73, 79. |
9 | TAHERIYOUN Masoud, SALEHIZIRI Moslem, PARAND Sina. Biofiltration performance and kinetic study of hydrogen sulfide removal from a real source[J]. Journal of Environmental Health Science and Engineering, 2019, 17(2): 645-656. |
10 | VYSKOCIL Jonathan M, LETOURNEAU Valerie, GIRARD Matthieu, et al. Reduction of bioaerosols emitted from a swine confinement building by a percolating biofilter during a 10-month period[J]. Atmosphere, 2019, 10(9): 525. |
11 | SANTAWEE Nuttapong, TREESUBSUNTORN Chairat, THIRAVETYAN Paitip. Using modified coir pith-glucose syrup beads inoculated with Bacillus thuringiensis as a packing material in trimethylamine (fishy odor) biofilter[J]. Atmospheric Pollution Research, 2019, 10(4): 1312-1319. |
12 | DOLPHEN Rujira, TREESUBSUNTORN Chairat, SANTAWEE Nuttapong, et al. Modified coir pith with glucose syrup as a supporter in non-external nutrient supplied biofilter for benzene removal by Bacillus megaterium[J]. Environmental Technology, 2020, 41(27): 3607-3618. |
13 | 陆日明, 王德汉, 项钱彬, 等. 填料组成对生物滤池除臭效果的影响[J]. 农业环境科学学报, 2007, 26(3): 1164-1168. |
LU Riming, WANG Dehan, XIANG Qianbin, et al. Impact of media assemblage on the odor removal effects of biofilter[J]. Journal of Agro-Environment Science, 2007, 26(3): 1164-1168. | |
14 | ABRAHAM Samantha, JOSLYN Scott, SUFFET I H. Treatment of odor by a seashell biofilter at a wastewater treatment plant[J]. Journal of the Air & Waste Management Association, 2015, 65(10): 1217-1228. |
15 | FARAJ S H E, ESFAHANY M N, KADIVAR M, et al. Vinyl chloride removal from an air stream by biotrickling filter[J]. Journal of Environmental Science and Health, Part A, 2012, 47(14): 2263-2269. |
16 | SEMPERE F, WINTER P, WAAKLENS A, et al. Treatment of discontinuous emission of sewage sludge odours by a full scale biotrickling filter with an activated carbon polishing unit[J]. Water Science and Technology, 2018, 77(10): 2482-2490. |
17 | RYBARCZYK Piotr, SZULCZYNSKI Bartosz, GEBICKI Jacek, et al. Treatment of malodorous air in biotrickling filters: a review[J]. Biochemical Engineering Journal, 2019, 141: 146-162. |
18 | 庄荣玉, 王磊刚, 李美燕, 等. 异养菌与新型填料成膜性及BTF处理屠宰H2S废气[J]. 中国环境科学, 2020, 40(3): 1106-1115. |
ZHUANG Rongyu, WANG Leigang, LI Meiyan, et al. Biofilm formation of a heterotrophic bacterium on the novel packing material and the removal of hydrogen sulfide produced in a slaughtering process by biotrickling filter[J]. China Environmental Science, 2020, 40(3): 1106-1115. | |
19 | ARELLANO Garcia Luis, LE Borgne Sylvie, REVAH Sergio. Simultaneous treatment of dimethyl disulfide and hydrogen sulfide in an alkaline biotrickling filter[J]. Chemosphere, 2018, 191: 809-816. |
20 | MIRMOHAMMADI M, SOTOUDEHEIAN S, BAYAT R. Triethylamine removal using biotrickling filter (BTF): effect of height and recirculation liquid rate on BTFs performance[J]. International Journal of Environmental Science and Technology, 2017, 14(8): 1615-1624. |
21 | ZHU Runye, CHRISTIAN Kennes, CHENG Zhuowei, et al. Styrene removal in a biotrickling filter and a combined UV-biotrickling filter: steady- and transient-state performance and microbial analysis[J]. Chemical Engineering Journal, 2015, 275: 168-178. |
22 | JIANG Xia, YAN Rong, Joo Hwa TAY. Reusing H2S-exhausted carbon as packing material for odor biofiltration[J]. Chemosphere, 2008, 73(5): 698-704. |
23 | DUAN Huiqi, Lawrence Choon Chiaw KOE, YAN Rong, et al. Treatment of H2S using a horizontal biotrickling filter based on biological activated carbon: reactor setup and performance evaluation[J]. Applied Microbiology and Biotechnology, 2005, 67: 143-149. |
24 | JIANG Xia, YAN Rong, Joo Hwa TAY. Transient-state biodegradation behavior of a horizontal biotrickling filter in co-treating gaseous H2S and NH3[J]. Applied Microbiology and Biotechnology, 2009, 81(5): 969-975. |
25 | 张书景, 李坚, 李依丽, 等. 采用错流式生物滴滤反应器净化甲苯废气[J]. 北京工业大学学报, 2009, 35(2): 246-251. |
ZHANG Shujing, LI Jian, LI Yili, et al. Removal of toluene waste gas by a cross-flow trickling biofilter[J]. Journal of Beijing University of Technology, 2009, 35(2): 246-251. | |
26 | LI Tong, LI Hao, LI Chunli. A review and perspective of recent research in biological treatment applied in removal of chlorinated volatile organic compounds from waste air[J]. Chemosphere, 2020, 250: 126338. |
27 | WANG Can, XI Jinying, HU Hongying, et al. Stimulative effects of ozone on a biofilter treating gaseous chlorobenzene[J]. Environmental Science & Technology, 2009, 43(24): 9407-9412. |
28 | 李远啸, 郭斌, 刘倩, 等. 生物洗涤法处理含苯废气[J]. 化工环保, 2019, 39(6): 646-652. |
LI Yuanxiao, GUO Bin, LIU Qian, et al. Treatment of benzene-containing waste gas by bioscrubbing process[J]. Environmental Protection of Chemical Industry, 2019, 39(6): 646-652. | |
29 | YEOM Sung Ho, DAUGULIS Andrew J, NIELSEN David R. Estimating the cellular maintenance coefficient and its use in the design of two-phase partitioning bioscrubbers[J]. Bioprocess and Biosystems Engineering, 2010, 33(6): 731-739. |
30 | NOURMOHAMMADI Mohammad, GOLBABAEI Farideh, KARIMI Ali, et al. Absorption and biodegradation of toluene in a two-phase low-pressure bioscrubber using cutting oil as the organic phase[J]. Health Scope, 2019, 8(1): 1-8. |
31 | Der Heyden Caroline VAN, DEMEYER Peter, VOLCKE Eveline I P. Mitigating emissions from pig and poultry housing facilities through air scrubbers and biofilters: state-of-the-art and perspectives[J]. Biosystems Engineering, 2015, 134: 74-93. |
32 | BOWKER R P. Biological odour control by diffusion into activated sludge basins[J]. Water Science and Technology, 2000, 41(6): 127-132. |
33 | RODRIGUEZ Elisa, GARCIA-ENCINA Pedro A, MUNOZ Raul, et al. Microbial community changes during different empty bed residence times and operational fluctuations in an air diffusion reactor for odor abatement[J]. Science of the Total Environment, 2017, 590/591: 352-360. |
34 | BARBOSA Vera, HOBBS Phil, SNEATH Robert, et al. Investigating the capacity of an activated sludge process to reduce volatile organic compounds and odor emissions[J]. Water Environment Research, 2006, 78(8): 842-851. |
35 | LEBRERO Raquel, RODRIGUEZ Elisa, GARCIA-ENCINA Pedro A, et al. A comparative assessment of biofiltration and activated sludge diffusion for odour abatement[J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 622-630. |
36 | KRAAKMAN N J R, ESTRADA J M, LEBRERO R, et al. Evaluating odour control technologies using reliability and sustainability criteria—A case study for water treatment plants[J]. Water Science and Technology, 2014, 69(7): 1426-1433. |
37 | VENTURA MATOS R, FERREIRA F, SALDANHA MATOS J. Influence of intermittence and pressure differentials in hydrogen sulfide concentration in a gravity sewer[J]. Water, 2019, 11(9): 1780. |
38 | BYLINSKI Hubert, GEBICKI Jacek, NAMIESNIK Jacek. Evaluation of health hazard due to emission of volatile organic compounds from various processing units of wastewater treatment plant[J]. International Journal of Environmental Research and Public Health, 2019, 16(10): E1712. |
39 | ESTRADA Jose M, KRAAKMAN N J R, LEBRERO R, et al. Integral approaches to wastewater treatment plant upgrading for odor prevention: activated sludge and oxidized ammonium recycling[J]. Bioresource Technology, 2015, 196: 685-693. |
40 | 城镇污水处理厂全过程除臭技术[J]. 中国环保产业, 2014(10): 70. |
Whole course deodorization technology in town sewage treatment plants[J]. China Environmental Protection Industry, 2014(10): 70. | |
41 | HUSBAND Joseph A, PHILLIPS Jennifer, COUGHENOUR J R, et al. Innovative approach to centrate nitrification accomplishes multiple goals: nitrogen removal and odour control[J]. Water Science and Technology, 2010, 61(5): 1097-1103. |
42 | 司马勤, 曹晶, 姚行平, 等. 大坦沙污水厂二期生物反应池加盖除臭工程设计[J]. 中国给水排水, 2007(14): 52-55. |
SIMA Qin, CAO Jing, YAO Xingping, et al. Design of covering and deodorization project of second-phase biological reaction tank of datansha WWTP[J]. China Water & Wastewater, 2007(14): 52-55. | |
43 | 柯明勇. 集美污水处理厂生物滤池除臭工程设计[J]. 中国给水排水, 2011, 27(18): 55-57. |
KE Mingyong. Engineering application of biofilter deodorization in Jimei sewage treatment plant[J]. China Water & Wastewater, 2011, 27(18): 55-57. | |
44 | 芮旭东, 陈丹, 龚文瑾. 除臭工艺在城市污水处理厂中的应用和发展[J]. 中国给水排水, 2012, 28(6): 21-23. |
RUI Xudong, CHEN Dan, GONG Wenjin. Application and development of deodorization process in urban sewage treatment plants[J]. China Water & Wastewater, 2012, 28(6): 21-23. | |
45 | 于方田, 宁靓, 张东生. 城市污水处理厂含硫恶臭气体的产生与治理[J]. 中国给水排水, 2012, 28(8): 87-90. |
YU Fangtian, NING Liang, ZHANG Dongsheng. Generation and control of malodorous sulfur gases at wastewater treatment plant[J]. China Water & Wastewater, 2012, 28(8): 87-90. | |
46 | 齐国庆, 刘发强, 刘光利. 生物洗涤+生物滴滤组合工艺处理炼油污水场恶臭气体工程设计[J]. 环境工程, 2013, 31(1): 56-58, 76. |
QI Guoqing, LIU Faqiang, LIU Guangli. Design of project to treat odor gas in oil refinery wastewater field by bio-scrubbing+bio-trickling[J]. Environmental Engineering, 2013, 31(1): 56-58, 76. | |
47 | 郭莉芳. 宁波市新周污水处理厂一期工程设计及运行效果[J]. 给水排水, 2014, 50(S1): 123-127. |
GUO Lifang, Design and operational performance of Ningbo Xinzhou sewage treatment plant (phase Ⅰ project )[J]. Water & Wastewater Engineering, 2014, 50(S1): 123-127. | |
48 | 彭淑婧, 陈俊, 郑海霞, 等. 畜禽屠宰污水厂臭气治理工程设计与应用[J]. 中国给水排水, 2015, 31(22): 70-73. |
PENG Shujing, CHEN Jun, ZHENG Haixia, et al. Design and application of odorous gas treatment project in slaughterhouse wastewater treatment plant[J]. China Water & Wastewater, 2015, 31(22): 70-73. | |
49 | 杨瑞洪, 付乐. 生物过滤工艺在污水处理厂除臭工程中的应用[J]. 工业安全与环保, 2015, 41(9): 9-12. |
YANG Ruihong, FU Le. Engineering application of biological filtration technology in sewage treatment plant deodorization[J]. Industrial Safety and Environmental Protection, 2015, 41(9): 9-12. | |
50 | 吴旭磊, 顾淼, 孙智莉, 等. 生物滴滤床用于温州市中心片污水厂的臭气治理[J]. 中国给水排水, 2015, 31(16): 98-101. |
WU Xulei, GU Miao, SUN Zhili, et al. Application of biotrickling bed to odor treatment in Wenzhou central district wastewater treatment plant[J]. China Water & Wastewater, 2015, 31(16): 98-101. | |
51 | 康奕菁, 李秀芬, 吴少娟, 等. 等离子体-生物法除臭新技术处理城镇污水系统恶臭废气的试验研究[J]. 广东化工, 2016, 43(8): 128-129, 122. |
KANG Yijing, LI Xiufen, WU Shaojuan, et al. The plasma-biological process on the malodorous gas from wastewater treatment plant[J]. Guangdong Chemical Industry, 2016, 43(8): 128-129, 122. | |
52 | 冯辉, 王舜和. 天津市张贵庄污水处理厂除臭系统设计[J]. 中国给水排水, 2017, 33(14): 51-54. |
FENG Hui, WANG Shunhe. Design of deodorization system in Tianjin Zhangguizhuang wastewater treatment plant[J]. China Water & Wastewater, 2017, 33(14): 51-54. | |
53 | 沈为, 吴运松, 卢东昱, 等. 印染园区集中式污水处理厂除臭工程设计实例[J]. 中国给水排水, 2017, 33(12): 67-70. |
SHEN Wei, WU Yunsong, LU Dongyu, et al. Design case of odor removal project in dye industrial zone’s wastewater treatment plant[J]. China Water & Wastewater, 2017, 33(12): 67-70. | |
54 | 杨国平. 除臭工艺在城市污水处理应用中的问题及对策[J]. 区域治理, 2019, 272(46): 137-139. |
YANG Guoping. Problems and Countermeasures in the application of deodorization technology in urban sewage treatment[J]. Regional Governance, 2019, 272(46): 137-139. | |
55 | 宁海丽, 康广凤, 祝征海, 等. 多种除臭组合工艺在城市污水处理厂中的应用[J]. 净水技术, 2019, 38(8): 94-98. |
NING Haili, KANG Guangfeng, ZHU Zhenghai, et al. Application of multiple deodorization combination technologies in municipal wastewater treatment plant[J]. Water Purification Technology, 2019, 38(8): 94-98. | |
56 | 刘发辉, 许龙海, 陈汝超, 等. 石洞口污水处理厂除臭提标改造的思路与实践[J]. 中国给水排水, 2019, 35(22): 52-57. |
LIU fahui, XU Longhai, CHEN Ruchao, et al. Ideas and practice of deodorization upgrading project for Shanghai Shidongkou municipal wastewater treatment plant[J]. China Water & Wastewater, 2019, 35(22): 52-57. | |
57 | 张丽丽, 郭红峰, 严国奇, 等. 七格污水厂三期工程生物除臭系统的运行效果[J].中国给水排水, 2020, 36(1): 69-73, 79. |
[1] | WANG Ying, HAN Yunping, LI Lin, LI Yanbo, LI Huili, YAN Changren, LI Caixia. Research status and future prospects of the emission characteristics of virus aerosols in urban wastewater treatment plants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 439-446. |
[2] | GUO Jingbo 1,TIAN Yu2,ZHANG Lanhe2,MA Fang3. Emission and reduction strategies of greenhouse gases generated in municipal wastewater treatment plants [J]. Chemical Industry and Engineering Progree, 2012, 31(07): 1604-1609. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |