Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (5): 2484-2495.DOI: 10.16085/j.issn.1000-6613.2020-1063
• Energy processes and technology • Previous Articles Next Articles
BAO Wenjun1,2(), LI Zifu1,2(), WANG Xuemei1,2,3, GAO Ruiling1,2, CHENG Shikun1,2, MEN Yu1,2
Received:
2020-06-12
Online:
2021-05-24
Published:
2021-05-06
Contact:
LI Zifu
包文君1,2(), 李子富1,2(), 王雪梅1,2,3, 高瑞岭1,2, 程世昆1,2, 门玉1,2
通讯作者:
李子富
作者简介:
包文君(1996—),女,硕士研究生,研究方向为微生物产油脂。E-mail:基金资助:
CLC Number:
BAO Wenjun, LI Zifu, WANG Xuemei, GAO Ruiling, CHENG Shikun, MEN Yu. Progress of oleaginous yeast utilizing low-cost substrates to synthesize lipids[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2484-2495.
包文君, 李子富, 王雪梅, 高瑞岭, 程世昆, 门玉. 产油酵母利用廉价原料合成油脂的研究进展[J]. 化工进展, 2021, 40(5): 2484-2495.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1063
1 | 王翠玲. 普鲁兰短梗霉P10菌株产油脂的研究[D]. 青岛: 中国海洋大学, 2014. |
WANG Cuiling. Studies on lipid production by the aureobasidium pullulans P10[D]. Qingdao: Ocean University of China, 2014. | |
2 | SHIELDS-MENARD S A, AMIRSADEGHI M, FRENCH W T, et al. A review on microbial lipids as a potential biofuel[J]. Bioresource Technology, 2018, 259: 451-460. |
3 | 刘军锋. 第三代生物柴油的开发研究[D]. 北京: 北京化工大学, 2013. |
LIU Junfeng. Research on third generation biodiesel[D]. Beijing: Beijing University of Chemical Technology, 2013. | |
4 | SITEPU I R, GARAY L A, SESTRIC R, et al. Oleaginous yeasts for biodiesel: current and future trends in biology and production[J]. Biotechnology Advances, 2014, 32(7): 1336-1360. |
5 | FEI Q, CHANG H N, SHANG L, et al. The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production[J]. Bioresource Technology, 2011, 102(3): 2695-2701. |
6 | YE Y L, HUANG Y, XIA A, et al. Optimizing culture conditions for heterotrophic-assisted photoautotrophic biofilm growth of Chlorella vulgaris to simultaneously improve microalgae biomass and lipid productivity[J]. Bioresource Technology, 2018, 270:80-87. |
7 | FENG P Z, DENG Z Y, HU Z Y, et al. characterization of Chlorococcum pamirum as a potential biodiesel feedstock[J]. Bioresource Technology, 2014, 162:115-122. |
8 | SUN X, CAO Y, XU H, et al. Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process[J]. Bioresource Technology, 2014, 155: 204-212. |
9 | MAHAN K M, LE R K, YUAN J, et al. A Review on the bioconversion of lignin to microbial lipid with oleaginous Rhodococcus opacus[J]. Journal of Biotechnology & Biomaterials, 2017, 7(2): 1000262. |
10 | KUMAR S, GUPTA N, PAKSHIRAJAN K. Simultaneous lipid production and dairy wastewater treatment using Rhodococcus opacus in a batch bioreactor for potential biodiesel application[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 1630-1636. |
11 | KIM D H, LEE J H, HWANG Y, et al. Continuous cultivation of photosynthetic bacteria for fatty acids production[J]. Bioresource Technology, 2013, 148:277-282. |
12 | HARDE S M, WANG Z, HORNE M, et al. Microbial lipid production from SPORL-pretreated Douglas fir by Mortierella isabellina[J]. Fuel, 2016, 175:64-74. |
13 | PAPANIKOLAOU S, RONTOU M, BELKA A, et al. Conversion of biodiesel-derived glycerol into biotechnological products of industrial significance by yeast and fungal strains[J]. Engineering in Life Sciences, 2017, 17(3): 262-281. |
14 | VENKATA SUBHASH G, VENKATA MOHAN S. Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate[J]. Bioresource Technology, 2011, 102(19): 9286-9290. |
15 | KARAMEROU E E, THEODOROPOULOS C, WEBB C. Evaluating feeding strategies for microbial oil production from glycerol by Rhodotorula glutinis[J]. Engineering in Life Sciences, 2017, 17(3): 314-324. |
16 | HUANG C, CHEN X F, YANG X Y, et al. Bioconversion of corncob acid hydrolysate into microbial oil by the oleaginous yeast Lipomyces starkeyi[J]. Applied Biochemistry and Biotechnology, 2014, 172(4): 2197-2204. |
17 | TSIGIE Y A, WANG C Y, TRUONG C T, et al. Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate[J]. Bioresource Technology, 2011, 102(19): 9216-9222. |
18 | 胡洋. 油脂酵母利用粗甘油发酵产微生物油脂的研究[D]. 广州: 华南理工大学, 2016. |
HU Yang. Study on the use of crude glycerol for microbial oil fermentation by oleaginous yeasts[D]. Guangzhou: South China University of Technology, 2016. | |
19 | MENG X, YANG J M, XU X, et al. Biodiesel production from oleaginous microorganisms[J]. Renewable Energy, 2009, 34(1): 1-5. |
20 | QIN L, LIU L, ZENG A P, et al. From low-cost substrates to Single Cell Oils synthesized by oleaginous yeasts[J]. Bioresource Technology, 2017, 245: 1507-1519. |
21 | 杨晓兵. 圆红冬孢酵母油脂生产加工副产物再利用的研究[D]. 大连: 大连理工大学, 2015. |
YANG Xiaobing. Exhaustive recycling of the wastes from microbial lipid producing and processing with Rhodosproridium toruloides[D]. Dalian: Dalian University of Technology, 2015. | |
22 | 危臻. 基于木质纤维素生物炼制废物的微生物油脂生产及其机理研究[D]. 长沙: 湖南大学, 2015. |
WEI Zhen. Research on microbial lipid production and related mechanism based-on lignocellulose wastes from biorefinery process[D]. Changsha: Hunan University, 2015. | |
23 | BRAUNWALD T, FRENCH W T, CLAUPEIN W, et al. Economic assessment of microbial biodiesel production using heterotrophic yeasts[J]. International Journal of Green Energy, 2016, 13(3): 274-282. |
24 | DIAS C, SANTOS J, REIS A, et al. Yeast and microalgal symbiotic cultures using low-cost substrates for lipid production[J]. Bioresource Technology Reports, 2019, 7: 100261. |
25 | CHANG H N, KIM N-J, KANG J, et al. Biomass-derived volatile fatty acid platform for fuels and chemicals[J]. Biotechnology and Bioprocess Engineering, 2010, 15(1): 1-10. |
26 | ENSHAEIEH M, ABDOLI A, MADANI M, et al. Recycling of lignocellulosic waste materials to produce high-value products: single cell oil and xylitol[J]. International Journal of Environmental Science and Technology, 2014, 12(3): 837-846. |
27 | FEI Q, CHANG H N, SHANG L, et al. Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus[J]. Biotechnology and Bioprocess Engineering, 2011, 16(3): 482-487. |
28 | HUANG C, CHEN X F, XIONG L, et al. Single cell oil production from low-cost substrates: the possibility and potential of its industrialization[J]. Biotechnology Advances, 2013, 31(2): 129-139. |
29 | 柳杰,刘文慧,王晚晴, 等. 产油微生物及其发酵原料的研究进展 [J]. 环境工程, 2017, 35(3): 132-136. |
LIU Jie, LIU Wenhui, WANG Wanqing, et al. Reaserch advances in oleaginous microorganisms and fermenting materials[J]. Environmental Engineering, 2017, 35(3): 132-136. | |
30 | 陈龙,余强,庄新姝. 木质纤维素类生物质组分分离研究进展[J]. 新能源进展, 2017, 5(6) : 450-456. |
CHEN Long, YU Qiang, ZHUANG Xinshu. Advances in separation of lignocellulose biomass components[J]. Advances in New and Renewable Energy, 2017, 5(6) : 450-456. | |
31 | 李得钊,胡芳,许秀葵, 等. 超声波强化木质纤维素预处理的研究进展[J]. 纤维素科学与技术, 2020, 2828(1): 69-77. |
LI Dezhao, HU Fang, XU Xiukui, et al. Progress of ultrasound intensification for lignocellulose pretreatment[J]. Journal of Cellucose Science and Technology, 2020, 28(01): 69-77. | |
32 | 曹运齐,解先利,郭振强. 木质纤维素预处理技术研究进展[J]. 化工进展, 2020, 39(2): 489-495. |
CAO Yunqi, XIE Xianli, GUO Zhenqiang. Research progress on lignocellucose pretreatment technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 489-495. | |
33 | AYADI I, BELGHITH H, GARGOURI A, et al. Screening of new oleaginous yeasts for single cell oil production, hydrolytic potential exploitation and agro-industrial by-products valorization[J]. Process Safety and Environmental Protection, 2018, 119: 104-114. |
34 | TSIGIE Y A, WANG C Y, KASIM N S, et al. Oil production from yarrowia lipolytica polg using rice bran hydrolysate[J]. Journal of Biomedicine and Biotechnology, 2012, 2012: 378-384. |
35 | DEEBA F, PRUTHI V, NEGI Y S. Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production[J]. Bioresource Technology, 2016, 213: 96-102. |
36 | SITEPU I R, JIN M, FERNANDEZ J E, et al. Identification of oleaginous yeast strains able to accumulate high intracellular lipids when cultivated in alkaline pretreated corn stover[J]. Applied Microbiology and Biotechnology, 2014, 98(17): 7645-7657. |
37 | YAGUCHI A, ROBINSON A, MIHEALSICK E, et al. Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous[J]. Microbial Cell Factories, 2017, 16(1): 206. |
38 | GAO Z, MA Y, WANG Q, et al. Effect of crude glycerol impurities on lipid preparation by Rhodosporidium toruloides yeast 32489[J]. Bioresource Technology, 2016, 218:373-379. |
39 | XU J, ZHAO X, WANG W, et al. Microbial conversion of biodiesel byproduct glycerol to triacylglycerols by oleaginous yeast Rhodosporidium toruloides and the individual effect of some impurities on lipid production[J]. Biochemical Engineering Journal, 2012, 65:30-36. |
40 | CHEN J, ZHANG X, YAN S, et al. Lipid production from fed-batch fermentation of crude glycerol directed by the kinetic study of batch fermentations[J]. Fuel, 2017, 209: 1-9. |
41 | DOBROWOLSKI A, MITULA P, RYMOWICZ W, et al. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica[J]. Bioresource Technology, 2016, 207:237-243. |
42 | SESTRIC R, MUNCH G, CICEK N, et al. Growth and neutral lipid synthesis by Yarrowia lipolytica on various carbon substrates under nutrient-sufficient and nutrient-limited conditions[J]. Bioresource Technology, 2014, 164:41-46. |
43 | RYWIŃSKA A, JUSZCZYK P, WOJTATOWICZ M, et al. Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications[J]. Biomass and Bioenergy, 2013, 48:148-166. |
44 | POLBUREE P, YONGMANITCHAI W, HONDA K, et al. Lipid production from biodiesel-derived crude glycerol by Rhodosporidium fluviale DMKU-RK253 using temperature shift with high cell density[J]. Biochemical Engineering Journal, 2016, 112:208-218. |
45 | MAGDOULI S, GUEDRI T, TAREK R, et al. Valorization of raw glycerol and crustacean waste into value added products by Yarrowia lipolytica[J]. Bioresource Technology, 2017, 243:57-68. |
46 | CHI Z Y, ZHENG Y B, MA J W, et al. Oleaginous yeast Cryptococcus curvatus culture with dark fermentation hydrogen production effluent as feedstock for microbial lipid production[J]. International Journal of Hydrogen Energy, 2011, 36(16): 9542-9550. |
47 | LING J Y, NIP S, SHIM H. Enhancement of lipid productivity of Rhodosporidium toruloides in distillery wastewater by increasing cell density[J]. Bioresource Technology, 2013, 146:301-309. |
48 | CHUNG J, LEE I, HAN J I. Biodiesel production from oleaginous yeasts using livestock wastewater as nutrient source after phosphate struvite recovery[J]. Fuel, 2016, 186:305-310. |
49 | 刘猛. 利用纤维素乙醇废水培养粘红酵母生产微生物油脂[D]. 北京:北京化工大学, 2017. |
LIU Meng. Utilization of Rhodotorula glutinis cultivation in cellulosic ethanal wastewater for production of microbial lipid[D]. Beijing: Beijing University Of Chemical Technology, 2017. | |
50 | MAGDOULI S, BRAR S K, BLAIS J F. Co-culture for lipid production: advances and challenges[J]. Biomass and Bioenergy, 2016, 92:20-30. |
51 | LING J Y, NIP S, CHEOK W L, et al. Lipid production by a mixed culture of oleaginous yeast and microalga from distillery and domestic mixed wastewater[J]. Bioresource Technology, 2014, 173:132-139. |
52 | QIN L, LIU L, WANG Z M, et al. Efficient resource recycling from liquid digestate by microalgae-yeast mixed culture and the assessment of key gene transcription related to nitrogen assimilation in microalgae[J]. Bioresource Technology, 2018, 264:90-97. |
53 | ZHOU W W, WANG W R, LI Y H, et al. Lipid production by Rhodosporidium toruloides Y2 in bioethanol wastewater and evaluation of biomass energetic yield[J]. Bioresource Technology, 2013, 127:435-440. |
54 | ZENG Y, XIE T H, LI P Y, et al. Enhanced lipid production and nutrient utilization of food waste hydrolysate by mixed culture of oleaginous yeast Rhodosporidium toruloides and oleaginous microalgae Chlorella vulgaris[J]. Renewable Energy, 2018, 126:915-923. |
55 | LLAMAS M, TOMÁS-PEJ􀆕 E, GONZÁLEZ-FERNÁNDEZ C. Volatile fatty acids from organic wastes as novel low-cost carbon source for Yarrowia lipolytica[J]. New Biotechnology, 2020, 56:123-129. |
56 | LIU Jia, YUAN Ming, LIU Jianan, et al. Microbial conversion of mixed volatile fatty acids into microbial lipids by sequencing batch culture strategy[J]. Bioresource Technology, 2016, 222:75-81. |
57 | GAO R L, LI Z F, ZHOU X Q, et al. Oleaginous yeast Yarrowia lipolytica culture with synthetic and food waste-derived volatile fatty acids for lipid production[J]. Biotechnology for Biofuels, 2017, 10: 1-15. |
58 | LIU J N, HUANG X F, CHEN R, et al. Efficient bioconversion of high-content volatile fatty acids into microbial lipids by Cryptococcus curvatus ATCC 20509[J]. Bioresource Technology, 2017, 239:394-401. |
59 | LIU Z J, LIU L P, WEN P, et al. Effects of acetic acid and pH on the growth and lipid accumulation of the oleaginous yeast Trichosporon fermentans[J]. Bioresources, 2015, 10: 4152-4166. |
60 | GAO R, LI Z, ZHOU X, et al. Enhanced lipid production by Yarrowia lipolytica cultured with synthetic and waste-derived high-content volatile fatty acids under alkaline conditions[J]. Biotechnology for Biofuels, 2020, 13: 1-16. |
61 | CHRISTOPHE G, DEO J L, KUMAR V, et al. Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus[J]. Applied Biochemistry and Biotechnology, 2012, 167(5): 1270-1279. |
62 | XU X, KIM J Y, CHO H U, et al. Bioconversion of volatile fatty acids from macroalgae fermentation into microbial lipids by oleaginous yeast[J]. Chemical Engineering Journal, 2015, 264:735-743. |
63 | FONTANILLE P, KUMAR V, CHRISTOPHE G, et al. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica[J]. Bioresource Technology, 2012, 114:443-449. |
64 | HUANG X F, LIU J N, LU L J, et al. Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides[J]. Bioresource Technology, 2016, 206:141-149. |
65 | DONOT F, FONTANA A, BACCOU J C, et al. Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics[J]. Biomass and Bioenergy, 2014, 68:135-150. |
66 | MAHAJAN D, SENGUPTA S, SEN S. Strategies to improve microbial lipid production: optimization techniques[J]. Biocatalysis and Agricultural Biotechnology, 2019, 22: 101321. |
67 | NIEHUS X, CRUTZ-LE COQ A M, SANDOVAL G, et al. Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials[J]. Biotechnology for Biofuels, 2018, 11: 11. |
[1] | XUE Kai, WANG Shuai, MA Jinpeng, HU Xiaoyang, CHONG Daotong, WANG Jinshi, YAN Junjie. Planning and dispatch of distributed integrated energy systems for industrial parks [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3510-3519. |
[2] | ZHANG Wei, WANG Rui, MIAO Ping, TIAN Ge. Application research progress of renewable power-to-methane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1257-1269. |
[3] | JIN Xin, LI Yushan, XIE Qingqing, WANG Mengyu, XIA Xingfan, YANG Chaohe. Progress on solketal synthesis catalyzed by porous materials [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 731-743. |
[4] | MA Wenjie, YAO Weitang. Application of covalent organic frameworks ( COFs ) in lithium-ion batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5339-5352. |
[5] | YANG Chengruixue, HUANG Qiyuan, RAN Jiansu, CUI Yuntong, WANG Jianjian. Palladium nanoparticles supported by phosphoric acid-modified SiO2 as efficient catalysts for low-temperature hydrodeoxygenation of vanillin in water [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5179-5190. |
[6] | YAO Lun, ZHOU Yongjin. Progress in microbial utilization of one-carbon feedstocks for biomanufacturing [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 16-29. |
[7] | QIN Zhenfang, LIAO Rihong, MA Weifang. Research progress on absorption-microalgae fixation of low concentration CO2 and synchronous oil production in gas power plant [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 94-106. |
[8] | LIU Yanhui, ZHOU Mingfang, MA Ming, WANG Kai, TAN Tianwei. Recent advances on the bio-fixation of CO2 driven by renewable energy [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 1-15. |
[9] | YANG Zheng, XIE Yongli, YANG Guangyao, ZHANG Lizhong, LIU Yunxiang. Application analysis of direct cooling exhaust air heat pump system in Xiaobaodang coal mine [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 643-647. |
[10] | WANG Hongxia, XU Wanyi, ZHANG Zaoxiao. Development status and suggestions of green hydrogen energy produced by water electrolysis from renewable energy [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 118-131. |
[11] | HU Bing, XU Lijun, HE Shan, SU Xin, WANG Jiwei. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. |
[12] | LI Xiang, GE Wujie, MA Xianguo, PENG Gongchang. Research progress on countermeasures for microcrack-induced capacity degradation of Ni-rich cathode materials [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4277-4287. |
[13] | ZHAO Jianbing, YANG Dan, SHU Yuancao, ZHU Junbo, PU Shiping, SONG Xiaodan, LIU Shouqing, CHAI Xijuan, LI Xuemei. Preparation of Na2CO3 /CF solid base and its catalytic transesterification of rapeseed oil [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3608-3614. |
[14] | ZOU Pengcheng, JIN Guangyuan, LI Zhenfeng, SONG Chunfang, HAN Taibai, ZHU Yulian. Analysis of multi-physical field characteristics in a microwave reactor with a mode stirrer [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2301-2310. |
[15] | HUANG Sheng, WANG Jingyu, LI Zhenyu. Analysis of green and low-carbon development path of petroleum and chemical industry under the goal of carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1689-1703. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |