Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (5): 2496-2508.DOI: 10.16085/j.issn.1000-6613.2020-1149
• Energy processes and technology • Previous Articles Next Articles
ZHANG Shumei1,2(), WANG Yunpu1,2(), XIA Meiling1,2, ZENG Yuan1,2, LIU Yuhuan1,2, JIANG Lin1,2, TIAN Xiaojie1,2, ZENG Zihong1,2, WU Qiuhao1,2, RUAN Roger3
Received:
2020-06-22
Online:
2021-05-24
Published:
2021-05-06
Contact:
WANG Yunpu
张淑梅1,2(), 王允圃1,2(), 夏美玲1,2, 曾媛1,2, 刘玉环1,2, 姜林1,2, 田晓洁1,2, 曾子鸿1,2, 吴秋浩1,2, RUAN Roger3
通讯作者:
王允圃
作者简介:
张淑梅(1997—),女,硕士研究生,研究方向为生物质催化热解。E-mail:基金资助:
CLC Number:
ZHANG Shumei, WANG Yunpu, XIA Meiling, ZENG Yuan, LIU Yuhuan, JIANG Lin, TIAN Xiaojie, ZENG Zihong, WU Qiuhao, RUAN Roger. Research progress in preparation of fuel chemicals by dual catalytic pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2496-2508.
张淑梅, 王允圃, 夏美玲, 曾媛, 刘玉环, 姜林, 田晓洁, 曾子鸿, 吴秋浩, RUAN Roger. 生物质双级催化热解制备燃料化学品的研究进展[J]. 化工进展, 2021, 40(5): 2496-2508.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1149
催化 类型 | 催化剂 | 原料 | 催化剂作用 | 参考 文献 |
---|---|---|---|---|
核壳型 | ZSM-5、SBA-15、 核壳ZSM-5@SBA-15 | 玉米秸秆 | ZSM-5@SBA-15催化剂改善了传质扩散问题;使用ZSM-5@SBA-15比仅使用ZSM-5、SBA-15催化剂得到了更多的酚类、烃类化合物 | [ |
MCM-41、HY、 核壳HY/MCM-41 | 废轮胎 | HY/MCM-41在降低轮胎热解油中硫和多环芳烃含量、提高石油化工产量等方面应用前景广阔;HY/MCM-41的裂化活性、石化选择性高于纯HY和MCM-41 | [ | |
HZSM-5/MCM-41 | 稻壳、温室塑料薄膜 | 有助于芳烃的生成 | [ | |
ZSM-5/MCM-41 | 废弃农用地膜、 含可溶物的干酒糟 | ZSM-5/MCM-41催化比仅ZSM-5、MCM-41催化脱氧效果更好;利用核壳ZSM-5/MCM-41催化剂可显著提高生物油中的烃类得率 | [ | |
核壳ZSM-5@SBA-15 | 玉米秸秆 | 介孔壳部SBA-15促进了生物质热解蒸气传质,核部ZSM-5的酸性促进芳烃形成;适宜的SBA-15介孔壳层孔扩散长度利于大分子裂解成含氧中间体;介孔壳SBA-15的孔通道内酸性若过强,会促进焦炭生成并有不利影响 | [ | |
连续型 | MCM-41、HZSM-5 | 秸秆、皂角 | 添加MCM-41促使大分子化合物发生裂解并抑制焦炭生成,有利于延长HZSM-5的寿命 | [ |
连续型 核壳型 | HZSM-5/MCM-41 | 竹子 | 连续型催化在适宜条件下能促进烃类生成;核壳型催化灵活性高于连续型催化 | [ |
连续型 混合型 | Al-MCM-41、HZSM-5 | 山毛榉木质生物质 | 连续型催化可促进烃类、酚类、呋喃类、醇类等有利化合物的生成;HZSM-5与Al-MCM-41在连续催化和混合催化体系中可能存在协同效应;连续型催化对含氧化合物的裂化效果强于混合型催化 | [ |
催化 类型 | 催化剂 | 原料 | 催化剂作用 | 参考 文献 |
---|---|---|---|---|
核壳型 | ZSM-5、SBA-15、 核壳ZSM-5@SBA-15 | 玉米秸秆 | ZSM-5@SBA-15催化剂改善了传质扩散问题;使用ZSM-5@SBA-15比仅使用ZSM-5、SBA-15催化剂得到了更多的酚类、烃类化合物 | [ |
MCM-41、HY、 核壳HY/MCM-41 | 废轮胎 | HY/MCM-41在降低轮胎热解油中硫和多环芳烃含量、提高石油化工产量等方面应用前景广阔;HY/MCM-41的裂化活性、石化选择性高于纯HY和MCM-41 | [ | |
HZSM-5/MCM-41 | 稻壳、温室塑料薄膜 | 有助于芳烃的生成 | [ | |
ZSM-5/MCM-41 | 废弃农用地膜、 含可溶物的干酒糟 | ZSM-5/MCM-41催化比仅ZSM-5、MCM-41催化脱氧效果更好;利用核壳ZSM-5/MCM-41催化剂可显著提高生物油中的烃类得率 | [ | |
核壳ZSM-5@SBA-15 | 玉米秸秆 | 介孔壳部SBA-15促进了生物质热解蒸气传质,核部ZSM-5的酸性促进芳烃形成;适宜的SBA-15介孔壳层孔扩散长度利于大分子裂解成含氧中间体;介孔壳SBA-15的孔通道内酸性若过强,会促进焦炭生成并有不利影响 | [ | |
连续型 | MCM-41、HZSM-5 | 秸秆、皂角 | 添加MCM-41促使大分子化合物发生裂解并抑制焦炭生成,有利于延长HZSM-5的寿命 | [ |
连续型 核壳型 | HZSM-5/MCM-41 | 竹子 | 连续型催化在适宜条件下能促进烃类生成;核壳型催化灵活性高于连续型催化 | [ |
连续型 混合型 | Al-MCM-41、HZSM-5 | 山毛榉木质生物质 | 连续型催化可促进烃类、酚类、呋喃类、醇类等有利化合物的生成;HZSM-5与Al-MCM-41在连续催化和混合催化体系中可能存在协同效应;连续型催化对含氧化合物的裂化效果强于混合型催化 | [ |
催化模式 | 催化剂 | 原料 | 催化剂作用 | 参考文献 |
---|---|---|---|---|
模式Ⅰ、模式Ⅱ、模式Ⅲ | CaO、Al2O3、 ZnO、ZSM-5 | 木屑 | CaO降低了羧酸有机物和甲氧基苯酚得率;Al2O3促进了含氧化合物(分子 量>109g·mol-1)的裂解;在模式Ⅱ催化下芳烃得率较高 | [ |
模式Ⅰ | CaO、HZSM-5 | 木聚糖、LLDPE | 双催化剂的使用显著提高了芳烃的得率;酸在热解过程中先被CaO还原成酮,然后在HZSM-5上进行芳构化反应 | [ |
MgO、HZSM-5 | 竹渣、废润滑油 | 双催化体系具有显著的脱氧和芳构化作用;MgO通过酮化和醛缩合反应表现出明显的脱酸作用 | [ | |
模式Ⅰ、模式Ⅲ | MgO、CaO、 SrO、HZSM-5 | 竹屑 | 模式Ⅲ比模式Ⅰ具有更显著的芳构化和脱氧活性;揭示了碱性催化剂与HZSM-5的协同作用;与模式Ⅰ相比,模式Ⅲ提高了苯酚的相对选择性 | [ |
MgO、HZSM-5 | 废轮胎、竹屑 | 在较高的HZSM-5比例下,模式Ⅰ能有效产生芳烃;不同HZSM-5/MgO质量比下,模式Ⅰ对烷基苯类物质有积极的累加效应 | [ |
催化模式 | 催化剂 | 原料 | 催化剂作用 | 参考文献 |
---|---|---|---|---|
模式Ⅰ、模式Ⅱ、模式Ⅲ | CaO、Al2O3、 ZnO、ZSM-5 | 木屑 | CaO降低了羧酸有机物和甲氧基苯酚得率;Al2O3促进了含氧化合物(分子 量>109g·mol-1)的裂解;在模式Ⅱ催化下芳烃得率较高 | [ |
模式Ⅰ | CaO、HZSM-5 | 木聚糖、LLDPE | 双催化剂的使用显著提高了芳烃的得率;酸在热解过程中先被CaO还原成酮,然后在HZSM-5上进行芳构化反应 | [ |
MgO、HZSM-5 | 竹渣、废润滑油 | 双催化体系具有显著的脱氧和芳构化作用;MgO通过酮化和醛缩合反应表现出明显的脱酸作用 | [ | |
模式Ⅰ、模式Ⅲ | MgO、CaO、 SrO、HZSM-5 | 竹屑 | 模式Ⅲ比模式Ⅰ具有更显著的芳构化和脱氧活性;揭示了碱性催化剂与HZSM-5的协同作用;与模式Ⅰ相比,模式Ⅲ提高了苯酚的相对选择性 | [ |
MgO、HZSM-5 | 废轮胎、竹屑 | 在较高的HZSM-5比例下,模式Ⅰ能有效产生芳烃;不同HZSM-5/MgO质量比下,模式Ⅰ对烷基苯类物质有积极的累加效应 | [ |
1 | WANG Yunpu, WU Qiuhao, DUAN Dengle, et al. Ex-situ catalytic upgrading of vapors from fast microwave-assisted co-pyrolysis of Chromolaena odorata and soybean soapstock[J]. Bioresource Technology, 2018, 261: 306-312. |
2 | ZHANG Huiyan, XIAO Rui, JIN Baosheng, et al. Biomass catalytic pyrolysis to produce olefins and aromatics with a physically mixed catalyst[J]. Bioresource Technology, 2013, 140: 256-262. |
3 | HENG Lijun, ZHANG Huiyan, XIAO Jun, et al. Life cycle assessment of polyol fuel from corn stover via fast pyrolysis and upgrading[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2): 2733-2740. |
4 | WANG Yunpu, WU Qiuhao, DAI Leilei, et al. Co-pyrolysis of wet torrefied bamboo sawdust and soapstock[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 211-216. |
5 | CHEN Dengyu, ZHOU Jianbin, ZHANG Qisheng, et al. Evaluation methods and research progresses in bio-oil storage stability[J]. Renewable and Sustainable Energy Reviews, 2014, 40: 69-79. |
6 | WANG Yunpu, TIAN Xiaojie, ZENG Zihong, et al. Catalytic co-pyrolysis of alternanthera philoxeroides and peanut soapstock via a new continuous fast microwave pyrolysis system[J]. Waste Management, 2019, 88: 102-109. |
7 | PAYSEPAR Hooman, RAO Kasanneni Tirumala Venkateswara, YUAN Zhongshun, et al. Production of phenolic chemicals from hydrolysis lignin via catalytic fast pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2020, 149: 104842. |
8 | 陈旭. 生物质富钙热解过程中生物油脱氧机理及调控机制研究[D]. 武汉: 华中科技大学, 2018. |
CHEN Xu. Study on the reaction mechanism and regulation method of bio-oil deoxygenation during biomass pyrolysis process with Ca-based additives[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
9 | CHEN Xu, CHE Qingfeng, LI Shujuan, et al. Recent developments in lignocellulosic biomass catalytic fast pyrolysis: strategies for the optimization of bio-oil quality and yield[J]. Fuel Processing Technology, 2019, 196: 106180. |
10 | LIU Changjun, WANG Huamin, KARIM Ayman M, et al. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical Society Reviews, 2014, 43(22): 7594-7623. |
11 | STEFANIDIS Stylianos D, KALOGIANNIS Konstantinos G, ILIOPOULOU E F, et al. In-situ upgrading of biomass pyrolysis vapors: catalyst screening on a fixed bed reactor[J]. Bioresource Technology, 2011, 102(17): 8261-8267. |
12 | ZHANG Chenting, HU Xun, GUO Hongyu, et al. Pyrolysis of poplar, cellulose and lignin: effects of acidity and alkalinity of the metal oxide catalysts[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 590-605. |
13 | CHE Qingfeng, YANG Minjiao, WANG Xianhua, et al. Aromatics production with metal oxides and ZSM-5 as catalysts in catalytic pyrolysis of wood sawdust[J]. Fuel Processing Technology, 2019, 188: 146-152. |
14 | MOCHIZUKI Takehisa, ATONG Duangduen, CHEN Shih-Yuan, et al. Effect of SiO2 pore size on catalytic fast pyrolysis of Jatropha residues by using pyrolyzer-GC/MS[J]. Catalysis Communications, 2013, 36: 1-4. |
15 | TAN Yee Ling, ABDULLAH Ahmad Zuhairi, HAMEED Bassim H. Product distribution of the thermal and catalytic fast pyrolysis of karanja (Pongamia pinnata) fruit hulls over a reusable silica-alumina catalyst[J]. Fuel, 2019, 245: 89-95. |
16 | STEFANIDIS Stylianos D, KARAKOULIA S A, KALOGIANNIS Konstantinos G, et al. Natural magnesium oxide (MgO) catalysts: a cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil[J]. Applied Catalysis B: Environmental, 2016, 196: 155-173. |
17 | RAHMAN Md Maksudur, CHAI Meiyun, SARKER Manobendro, et al. Catalytic pyrolysis of pinewood over ZSM-5 and CaO for aromatic hydrocarbon: analytical Py-GC/MS study[J]. Journal of the Energy Institute, 2020, 93(1): 425-435. |
18 | MA Zhiqiang, CUSTODIS Victoria, BOKHOVEN Jeroen A VAN. Selective deoxygenation of lignin during catalytic fast pyrolysis[J]. Catalysis Science & Technology, 2014, 4(3): 766-772. |
19 | LU Qiang, ZHANG Zhifei, DONG Changqing, et al. Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS study[J]. Energies, 2010, 3(11): 1805-1820. |
20 | CHONG Yen Yee, Suchithra THANGALAZHY-GOPAKUMAR, Hoon Kiat NG, et al. Effect of oxide catalysts on the properties of bio-oil from in-situ catalytic pyrolysis of palm empty fruit bunch fiber[J]. Journal of Environmental Management, 2019, 247: 38-45. |
21 | WANG Shurong, DAI Gongxin, YANG Haiping, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy and Combustion Science, 2017, 62: 33-86. |
22 | ASADIERAGHI Masoud, DAUD Wan Mohd Ashri Wan, ABBAS Hazzim F. Heterogeneous catalysts for advanced bio-fuel production through catalytic biomass pyrolysis vapor upgrading: a review[J]. RSC Advances, 2015, 5(28): 22234-22255. |
23 | RINALDI Roberto, Ferdi SCHÜTH. Design of solid catalysts for the conversion of biomass[J]. Energy & Environmental Science, 2009, 2(6): 610-626. |
24 | RAMYA G, SUDHAKAR R, JOICE J A I, et al. Liquid hydrocarbon fuels from jatropha oil through catalytic cracking technology using AlMCM-41/ZSM-5 composite catalysts[J]. Applied Catalysis A: General, 2012, 433/434: 170-178. |
25 | 朱文杰. MCM-41 介孔分子筛的制备及其重金属离子吸附研究[D]. 昆明: 昆明理工大学, 2013. |
ZHU Wenjie. Preparation of MCM-41 mesoporous molecular sieve and its adsorption of heavy metal ions[D]. Kunming: Kunming University of Science and Technology, 2013. | |
26 | YU Zhenting, JIANG Lin, WANG Yunpu, et al. Catalytic pyrolysis of woody oil over SiC foam-MCM41 catalyst for aromatic-rich bio-oil production in a dual microwave system[J]. Journal of Cleaner Production, 2020, 255: 120179. |
27 | TWAIQ Farouq A, MOHAMED Abdul Rahman, BHATIA Subhash. Liquid hydrocarbon fuels from palm oil by catalytic cracking over aluminosilicate mesoporous catalysts with various Si/Al ratios[J]. Microporous and Mesoporous Materials, 2003, 64(1/2/3): 95-107. |
28 | JACKSON Michael A, COMPTON David L, BOATENG Akwasi A. Screening heterogeneous catalysts for the pyrolysis of lignin[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85(1/2): 226-230. |
29 | 陶涛. MCM-41介孔分子筛的合成方法及催化性能研究[D]. 镇江: 江苏大学, 2006. |
TAO Tao. The research of synthesis and catalytic performance of MCM-41 mesoporous molecular sieves[D]. Zhenjiang: Jiangsu University, 2006. | |
30 | 朱永恒. 功能化有序介孔材料SBA-15的控制合成及其应用研究[D]. 上海: 上海大学, 2013. |
ZHU Yongheng. Controllable synthesis and application of functionalized ordered mesoporous materials SBA-15[D]. Shanghai: Shanghai University, 2013. | |
31 | XUE Xiangfei, LIU Yawen, WU Liu, et al. Catalytic fast pyrolysis of maize straw with a core-shell ZSM-5@ SBA-15 catalyst for producing phenols and hydrocarbons[J]. Bioresource Technology, 2019, 289: 121691. |
32 | ZHANG Xuesong, LEI Hanwu, CHEN Shulin, et al. Catalytic co-pyrolysis of lignocellulosic biomass with polymers: a critical review[J]. Green Chemistry, 2016, 18(15): 4145-4169. |
33 | LI Lu, YAN Bin, LI Huaxiao, et al. Decreasing the acid value of pyrolysis oil via esterification using ZrO2/SBA-15 as a solid acid catalyst[J]. Renewable Energy, 2020, 146: 643-650. |
34 | BAKAR Muhammad S ABU, TITILOYE James O. Catalytic pyrolysis of rice husk for bio-oil production[J]. Journal of Analytical and Applied Pyrolysis, 2013, 103: 362-368. |
35 | NISHU, LIU Ronghou, RAHMAN Md Maksudur, et al. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: focus on structure[J]. Fuel Processing Technology, 2020, 199: 106301. |
36 | ENGTRAKUL Chaiwat, MUKARAKATE Calvin, STARACE Anne K, et al. Effect of ZSM-5 acidity on aromatic product selectivity during upgrading of pine pyrolysis vapors[J]. Catalysis Today, 2016, 269: 175-181. |
37 | MURATA Kazuhisa, LIU Yanyong, INABA Megumu, et al. Catalytic fast pyrolysis of jatropha wastes[J]. Journal of Analytical and Applied Pyrolysis, 2012, 94: 75-82. |
38 | RAMYA G, SIVAKUMAR T, ARIF M, et al. Application of microporous catalysts in the production of biofuels from non edible vegetable oils and used restaurant oil[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2015, 37(8): 878-885. |
39 | RAHMAN Md Maksudur, LIU Ronghou, CAI Junmeng. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oi—A review[J]. Fuel Processing Technology, 2018, 180: 32-46. |
40 | NAMCHOT Witsarut, JITKARNKA Sirirat. Catalytic pyrolysis of waste tire using HY/MCM-41 core-shell composite[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 297-306. |
41 | LI Wenlin, ZHENG Jinyu, LUO Yibin, et al. Hierarchical zeolite Y with full crystallinity: formation mechanism and catalytic cracking performance[J]. Energy & Fuels, 2017, 31(4): 3804-3811. |
42 | LU Qiang, ZHU Xifeng, LI Wenzhi, et al. On-line catalytic upgrading of biomass fast pyrolysis products[J]. Chinese Science Bulletin, 2009, 54(11): 1941-1948. |
43 | LERICI Laura Carolina, RENZINI Maria Soledad, PIERELLA Liliana Beatriz. Chemical catalyzed recycling of polymers: catalytic conversion of PE, PP and PS into fuels and chemicals over H-Y[J]. Procedia Materials Science, 2015, 8: 297-303. |
44 | 黄朝晖, 刘乃旺, 姚佳佳, 等. USY分子筛表面酸性的调变及其在催化脱除芳烃中烯烃的应用[J]. 化工进展, 2016, 35(1): 138-144. |
HUANG Zhaohui, LIU Naiwang, YAO Jiajia, et al. Surface acid modification of zeolite and its application in removal of olefins in aromatics[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 138-144. | |
45 | LI Lu, DING Zhiyong, LI Kun, et al. Liquid hydrocarbon fuels from catalytic cracking of waste cooking oils using ultrastable zeolite USY as catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2016, 117: 268-272. |
46 | 陈平, 高良军, 翟玉春. 微孔分子筛催化剂在芳酮合成中的应用[J]. 香料香精化妆品, 2008(1): 31-36. |
CHEN Ping, GAO Liangping, ZHAI Yuchun. Application advance of microporous molecular sieve in synthesis of aromatic ketone[J]. Flavour Fragrance Cosmetics, 2008(1): 31-36. | |
47 | MARCILLA A, G􀆕MEZ-SIURANA A, VALDÉS F. Catalytic pyrolysis of LDPE over H-beta and HZSM-5 zeolites in dynamic conditions: study of the evolution of the process[J]. Journal of Analytical and Applied Pyrolysis, 2007, 79(1/2): 433-442. |
48 | WANG Shurong, ZHOU Yan, LIANG Tao, et al. Catalytic pyrolysis of mannose as a model compound of hemicellulose over zeolites[J]. Biomass and Bioenergy, 2013, 57: 106-112. |
49 | LI Zhaoying, ZHONG Zhaoping, ZHANG Bo, et al. Catalytic fast co-pyrolysis of waste greenhouse plastic films and rice husk using hierarchical micro-mesoporous composite molecular sieve[J]. Waste Management, 2020, 102: 561-568. |
50 | LI Zhaoying, ZHONG Zhaoping, ZHANG Bo, et al. Catalytic fast pyrolysis of bamboo over micro‐mesoporous composite molecular sieves[J]. Energy Technology, 2018, 6(4): 728-736. |
51 | SANG Yu, LIU Hongxiao, HE Shichao, et al. Catalytic performance of hierarchical H-ZSM-5/MCM-41 for methanol dehydration to dimethyl ether[J]. Journal of Energy Chemistry, 2013, 22(5): 769-777. |
52 | ZHANG Bo, ZHONG Zhaoping, LI Tong, et al. Biofuel production from distillers dried grains with solubles (DDGS) co-fed with waste agricultural plastic mulching films via microwave-assisted catalytic fast pyrolysis using microwave absorbent and hierarchical ZSM-5/MCM-41 catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2018, 130: 1-7. |
53 | WU Qiuhao, WANG Yunpu, JIANG Lin, et al. Microwave-assisted catalytic upgrading of co-pyrolysis vapor using HZSM-5 and MCM-41 for bio-oil production: co-feeding of soapstock and straw in a downdraft reactor[J]. Bioresource Technology, 2020, 299: 122611. |
54 | RATNASARI Devy K, YANG Weihong, JÖNSSON Pär G. Two-stage ex-situ catalytic pyrolysis of lignocellulose for the production of gasoline-range chemicals[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 454-464. |
55 | WILLIAMS Paul T, BRINDLE Alexander J. Catalytic pyrolysis of tyres: influence of catalyst temperature[J]. Fuel, 2002, 81(18): 2425-2434. |
56 | DŨNG N A, KLAEWKLA R, WONGKASEMJIT S, et al. Light olefins and light oil production from catalytic pyrolysis of waste tire[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(2): 281-286. |
57 | XUE Xiangfei, WU Liu, WEI Xiaocui, et al. Product modification in catalytic fast pyrolysis of corn stalk: the decoupled effect of acidity and porosity within a core-shell micro-/mesoporous zeolite[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(19): 7445-7453. |
58 | CARLSON Torren R, Jungho JAE, LIN Yu Chuan, et al. Catalytic fast pyrolysis of glucose with HZSM-5: the combined homogeneous and heterogeneous reactions[J]. Journal of Catalysis, 2010, 270(1): 110-124. |
59 | DU Shoucheng, GAMLIEL David P, GIOTTO Marcus, et al. Coke formation of model compounds relevant to pyrolysis bio-oil over ZSM-5[J]. Applied Catalysis A: General, 2016, 513: 67-81. |
60 | 王佳. 生物质双级催化重整制备高品位液体燃料机制研究[D]. 南京: 东南大学, 2018. |
WANG Jia. Study on dual catalytic reforming of biomass to produce upgraded bio-oil[D]. Nanjing: Southeast University, 2018. | |
61 | WANG Shaoqing, LI Zhihe, BAI Xueyuan, et al. Catalytic pyrolysis of lignin in a cascade dual-catalyst system of modified red mud and HZSM-5 for aromatic hydrocarbon production[J]. Bioresource Technology, 2019, 278: 66-72. |
62 | WANG Shaoqing, LI Zhihe, BAI Xueyuan, et al. Catalytic pyrolysis of lignin with red mud derived hierarchical porous catalyst for alkyl-phenols and hydrocarbons production[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 8-17. |
63 | ZHENG Yunwu, WANG Jida, LIU Can, et al. Enhancing the aromatic hydrocarbon yield from the catalytic copyrolysis of xylan and LDPE with a dual-catalytic-stage combined CaO/HZSM-5 catalyst[J]. Journal of the Energy Institute, 2020, 93(5): 1833-1847. |
64 | DING Kuan, ZHONG Zhaoping, WANG Jia, et al. Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5[J]. Bioresource Technology, 2018, 261: 86-92. |
65 | ZHENG Yunwu, TAO Lei, HUANG Yuanbo, et al. Improving aromatic hydrocarbon content from catalytic pyrolysis upgrading of biomass on a CaO/HZSM-5 dual-catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2019, 140: 355-366. |
66 | WANG Jia, ZHONG Zhaoping, DING Kuan, et al. Catalytic fast pyrolysis of bamboo sawdust via a two-step bench scale bubbling fluidized bed/fixed bed reactor: study on synergistic effect of alkali metal oxides and HZSM-5[J]. Energy Conversion and Management, 2018, 176: 287-298. |
67 | CHENG Yuting, HUBER George W. Production of targeted aromatics by using Diels–Alder classes of reactions with furans and olefins over ZSM-5[J]. Green Chemistry, 2012, 14(11): 3114-3125. |
68 | WANG Jia, ZHANG Bo, ZHONG Zhaoping, et al. Catalytic fast co-pyrolysis of bamboo residual and waste lubricating oil over an ex-situ dual catalytic beds of MgO and HZSM-5: analytical PY-GC/MS study[J]. Energy Conversion and Management, 2017, 139: 222-231. |
69 | FAN Liangliang, CHEN Paul, ZHANG Yaning, et al. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality[J]. Bioresource Technology, 2017, 225: 199-205. |
70 | WANG Jia, ZHONG Zhaoping, DING Kuan, et al. Catalytic fast co-pyrolysis of bamboo sawdust and waste tire using a tandem reactor with cascade bubbling fluidized bed and fixed bed system[J]. Energy Conversion and Management, 2019, 180: 60-71. |
71 | BRIDGWATER Anthony V. Review of fast pyrolysis of biomass and product upgrading[J]. Biomass and Bioenergy, 2012, 38: 68-94. |
72 | Güray YILDIZ, RONSSE Frederik, DUREN Ruben VAN, et al. Challenges in the design and operation of processes for catalytic fast pyrolysis of woody biomass[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1596-1610. |
73 | Hae Won RYU, KIM Do Heui, Jungho JAE, et al. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons[J]. Bioresource Technology, 2020, 310: 123473. |
74 | ABNISA Faisal, WAN DAUD Wan Mohd Ashri. A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil[J]. Energy Conversion and Management, 2014, 87: 71-85. |
75 | DEMIRBAS A. Effect of temperature on pyrolysis products from biomass[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2007, 29(4): 329-336. |
76 | Funda ATEᶊ, IŞıKDAĞ Müjde Aslı. Evaluation of the role of the pyrolysis temperature in straw biomass samples and characterization of the oils by GC/MS[J]. Energy & Fuels, 2008, 22(3): 1936-1943. |
77 | FAN L, CHEN P, ZHOU N, et al. In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin[J]. Bioresource Technology, 2018, 247: 851-858. |
78 | DE WILD Paul, REITH Hans, HEERES Erik. Biomass pyrolysis for chemicals[J]. Biofuels, 2011, 2(2): 185-208. |
79 | HU Xun, GHOLIZADEH Mortaza. Biomass pyrolysis: a review of the process development and challenges from initial researches up to the commercialisation stage[J]. Journal of Energy Chemistry, 2019, 39: 109-143. |
80 | ZHOU Nan, LIU Shiyu, ZHANG Yaning, et al. Silicon carbide foam supported ZSM-5 composite catalyst for microwave-assisted pyrolysis of biomass[J]. Bioresource Technology, 2018, 267: 257-264. |
81 | WAN S L, WANG Y. A review on ex situ catalytic fast pyrolysis of biomass[J]. Frontiers of Chemical Science and Engineering, 2014, 8(3): 280-294. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |