Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (4): 2082-2091.DOI: 10.16085/j.issn.1000-6613.2020-1988
• Special column:Industrial catalysis • Previous Articles Next Articles
LIU Dongyang(), BAI Yu’en, ZHANG Linzhou, ZHANG Yuhao, ZHAO Liang(), GAO Jinsen, XU Chunming
Received:
2020-09-29
Online:
2021-04-14
Published:
2021-04-05
Contact:
ZHAO Liang
刘东阳(), 白宇恩, 张霖宙, 张宇豪, 赵亮(), 高金森, 徐春明
通讯作者:
赵亮
作者简介:
刘东阳(1993—),男,博士研究生,研究方向为石油与天然气化学。E-mail:基金资助:
CLC Number:
LIU Dongyang, BAI Yu’en, ZHANG Linzhou, ZHANG Yuhao, ZHAO Liang, GAO Jinsen, XU Chunming. Application advances of molecular level reaction kinetic modeling for catalytic cracking/pyrolysis process[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2082-2091.
刘东阳, 白宇恩, 张霖宙, 张宇豪, 赵亮, 高金森, 徐春明. 分子尺度反应动力学模型构建在催化裂化/裂解过程中的应用进展[J]. 化工进展, 2021, 40(4): 2082-2091.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1988
反应类型 | 化学反应 |
---|---|
烷烃裂化 | |
烯烃裂化 | |
烷基芳烃脱烷基 | |
芳烃侧链β-断裂 | |
环烷烃裂化 | |
氢转移反应 | |
环化 | |
芳构化 | |
异构化 | |
缩合反应 | 烯烃与烯烃、烯烃与芳烃及芳烃与芳烃之间的缩合反应 |
烷基转移 |
反应类型 | 化学反应 |
---|---|
烷烃裂化 | |
烯烃裂化 | |
烷基芳烃脱烷基 | |
芳烃侧链β-断裂 | |
环烷烃裂化 | |
氢转移反应 | |
环化 | |
芳构化 | |
异构化 | |
缩合反应 | 烯烃与烯烃、烯烃与芳烃及芳烃与芳烃之间的缩合反应 |
烷基转移 |
碳数 | 实验值 | 预测值 | ||
---|---|---|---|---|
烯烃 | 烷烃+环烷烃 | 烯烃 | 烷烃+环烷烃 | |
C2 | 39 | 61 | 5 | 95 |
C3 | 57 | 43 | 51 | 49 |
C4 | 42 | 58 | 46 | 54 |
C5 | 58 | 42 | 48 | 52 |
C6 | 60 | 40 | 70 | 30 |
C7+C8 | 63 | 37 | 73 | 27 |
C9+C10+C11 | 67 | 33 | 65 | 35 |
碳数 | 实验值 | 预测值 | ||
---|---|---|---|---|
烯烃 | 烷烃+环烷烃 | 烯烃 | 烷烃+环烷烃 | |
C2 | 39 | 61 | 5 | 95 |
C3 | 57 | 43 | 51 | 49 |
C4 | 42 | 58 | 46 | 54 |
C5 | 58 | 42 | 48 | 52 |
C6 | 60 | 40 | 70 | 30 |
C7+C8 | 63 | 37 | 73 | 27 |
C9+C10+C11 | 67 | 33 | 65 | 35 |
向量类型 | 芳烃 | 环烃 | CH2碳 | 分支点 | 甲基 | 氢 | 联桥 | 硫 | 氮 | 氧 |
---|---|---|---|---|---|---|---|---|---|---|
结构向量 | A6 A4 A2 | N6 N5 N4 N3 N2 N1 | R | Br | Me | IH | AA | NS RS | AN NN RN | NO RO KO |
向量类型 | 芳烃 | 环烃 | CH2碳 | 分支点 | 甲基 | 氢 | 联桥 | 硫 | 氮 | 氧 |
---|---|---|---|---|---|---|---|---|---|---|
结构向量 | A6 A4 A2 | N6 N5 N4 N3 N2 N1 | R | Br | Me | IH | AA | NS RS | AN NN RN | NO RO KO |
1 | ISHIHARA A. Preparation and reactivity of hierarchical catalysts in catalytic cracking[J]. Fuel Processing Technology, 2019, 194: 106116. |
2 | RAHIMI N, KARIMZADEH R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: a review[J]. Applied Catalysis A: General, 2011, 398(1/2): 1-17. |
3 | 许友好. 我国催化裂化工艺技术进展[J]. 中国科学: 化学, 2014, 44(1): 13-24. |
XU Youhao. Advance in China fluid catalytic cracking (FCC) process[J]. Scientia Sinica Chimica, 2014, 44(1): 13-24. | |
4 | 王涛. 催化裂化与油品调合集成优化[D]. 大连: 大连理工大学,2017. |
WANG Tao. Integrated optimization of refinery oil blending and catalytic cracking[D]. Dalian: Dalian University of Technology, 2017. | |
5 | 尤廷正. 浅谈丙烯生产技术[J]. 广东化工, 2018, 45(2): 125-126. |
YOU Tingzheng. Introduction to propylene production enhancement technology[J]. Guangdong Chemical Industry, 2018, 45(2): 125-126. | |
6 | WANG Ruipu, LI Yuming, JIANG Guiyuan, et al. An efficient head-tail co-conversion process for high quality gasoline via rational catalytic cracking[J]. Chemical Engineering Journal, 2020, 396: 125210. |
7 | 李中华, 肖武, 阮雪华, 等. 加氢裂化反应动力学建模研究进展[J]. 化工进展, 2016, 35(4): 988-994. |
LI Zonghua, XIAO Wu, RUAN Xuehua, et al. Research progress of hydrocracking reaction kinetic model[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 988-994. | |
8 | 张霖宙, 陈政宇, 吕文进, 等. 石油加工分子管理平台构建[J]. 中国科学: 化学, 2018, 48(4): 411-426. |
ZHANG Linzhou, CHEN Zhengyu, Wenjin LYU, et al. Development of petroleum refining molecular management modeling platform[J]. Scientia Sinica Chimica, 2018, 48(4): 411-426. | |
9 | 张霖宙, 赵锁奇, 史权, 等. 石油分子表征与分子层次模型构建:前沿及挑战[J]. 中国科学: 化学, 2020, 50(2): 192-203. |
ZHANG Linzhou, ZHAO Suoqi, SHI Quan, et al. Molecular characterization and modeling of petroleum refining process: frontiers and challenges[J]. Scientia Sinica Chimica, 2020, 50(2): 192-203. | |
10 | 欧阳福生, 王磊, 王胜, 等. 催化裂解过程分子尺度反应动力学模型研究[J]. 高校化学工程学报, 2008, 22(6): 927-934. |
OUYANG Fusheng, WANG Lei, WANG Sheng, et al. Molecular reaction kinetics model for deep catalytic cracking[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(6): 927-934. | |
11 | 欧阳福生, 王胜, 翁惠新. 催化裂解过程分子尺度的反应动力学模拟Ⅱ.反应动力学模型的建立[J]. 华东理工大学学报(自然科学版), 2008, 34(1): 29-35. |
OUYANG Fusheng, WANG Sheng, WENG Huixin. Molecular reaction kinetics simulation for deep catalytic cracking Ⅱ. Establishment of reaction kinetics model[J]. Journal of East China University of Science and Technology ( Natural Science Edition), 2008, 34(1): 29-35. | |
12 | LIGURAS Dimitris K, ALLEN David T. Structural models for catalytic cracking. 1. Model compound reactions[J]. Industrial & Engineering Chemistry Research, 1989, 28(6): 665-673. |
13 | LIGURAS Dimitris K, ALLEN David T. Structural models for catalytic cracking. 2. Reactions of simulated oil mixtures[J]. Industrial & Engineering Chemistry Research, 1989, 28(6): 674-683. |
14 | BALTANAS Miguel A, FROMENT Gilbeat F. Computer generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts [J]. Computers & Chemical Engineering, 1985, 9(1): 71-81 |
15 | Ivar UGI, BAUER Johannes, BRANDT Josef, et al. New applications of computers in chemistry[J]. Angewandte Chemie International Edition, 1979, 18(2): 111-123. |
16 | DUGUNDJI James, Ivar UGI. An algebraic model of constitutional chemistry as a basis for chemical computer programs[J]. Computer in Chemistry, 1973, 4(36): 19-64. |
17 | QUANN R J, JAFFE S B. Structure-oriented lumping: Describing the chemistry of complex hydrocarbon mixtures [J]. Industrial & Engineering Chemistry Research, 1992, 31(11): 2483-2497. |
18 | CHEN Zhengyu, FENG Song, ZHANG Linzhou, et al. Molecular level kinetic modeling of heavy oil FCC process based on hybrid structural unit and bond-electron matrix[J]. AIChE Journal, 2021, 67(1): e17027. |
19 | HOLLANDER M A DEN, WISSINK M, MAKKEE M, et al. Gasoline conversion: Reactivity towards cracking with equilibrated FCC and ZSM-5 catalysts[J]. Applied Catalysis A General, 2002, 223(1/2): 85-102. |
20 | OLAH George A, DEMEMBER John R, SHEN Jacob. Electrophilic reactions at single bonds. X. Hydrogen transfer, alkylation, and alkylolysis of alkanes with methyl and ethyl fluoroantimonate[J]. Journal of the American Chemical Society, 1973, 95(15): 4952-4956. |
21 | OLAH George A, OLAH J A. Electrophilic reactions at single bonds. IV. Hydrogen transfer from, alkylation of, and alkylolysis of alkanes by alkylcarbenium fluoroantimonates[J]. Journal of the American Chemical Society, 1971, 93(5): 1256-1259. |
22 | OLAH George A, HALPERN Y, SHEN J, et al. Electrophilic reactions at single bonds. III. H-D exchange and protolysis (deuterolysis) of alkanes with superacids. The mechanism of acid-catalyzed hydrocarbon transformation reactions involving the sigma electron pair donor ability of single bonds via three-center bond formation[J]. Journal of the American Chemical Society, 1971, 93(5): 1251-1256. |
23 | WHITMORE Frank C. Mechanism of the ploymerization of olefins by acid catalysts[J]. Industrial & Engineering Chemistry, 1934, 26(1): 94-95. |
24 | OLAH George A, KIOVSKY Thomas E. Stable carbonium ions. LXV. Protonation of hydrogen cyanide and alkyl nitriles in FSO3H-SbF5-SO2 solution. Comparative study of Meerwein’s N-alkyl nitrilium ions[J]. Journal of the American Chemical Society, 1968, 90(17): 4666-4672. |
25 | MENG Xianghai, XU Chunming, GAO Jinsen, et al. Studies on catalytic pyrolysis of heavy oils: Reaction behaviors and mechanistic pathways[J]. Applied Catalysis A: General, 2005, 294(2): 168-176. |
26 | 刘东阳. 费-托蜡裂解混合α-烯烃齐聚制备润滑油基础油[D]. 抚顺: 辽宁石油化工大学, 2019. |
LIU Dongyang. Preparation of synthetic lubricating base oil by oligomerization of Fischer-Tropsch wax cracking mixed α-olefins[D]. Fushun: Liaoning Shihua University, 2019. | |
27 | 徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009: 302-303. |
XU Chunming, YANG Chaohe. Petroleum refining engineering[M]. 4th ed. Beijing: Petroleum Industry Press, 2009: 302-303. | |
28 | 祝然. 结构导向集总新方法构建催化裂化动力学模型及其应用研究[D]. 上海: 华东理工大学, 2013. |
ZHU Ran. Construction catalytic cracking kinetic model based on structure oriented lumping new method and study on its application[D]. Shanghai: East China University of Science and Technology, 2013. | |
29 | 薛高平. 催化裂化单事件微反应动力学模型研究[D]. 上海: 华东理工大学, 2013. |
XUE Gaoping. Research on single-event microkinetic (SEMK) modeling of catalytic cracking[D]. Shanghai: East China University of Science and Technology, 2013. | |
30 | BALTANAS Miguel A, RAEMDONCK Kristiaan K VAN, FROMENT Gilbert F, et al. Fundamental kinetic modeling of hydroisomerization and hydrocracking on noble metal-loaded faujasites. 1. Rate parameters for hydroisomerization[J]. Industrial & Engineering Chemistry Research, 1989, 28(7): 899-910. |
31 | FENG Wu, VYNCKIER Erik, FROMRNT Gilbert F. Single-event kinetics of catalytic cracking[J]. Industrial & Engineering Chemistry Research, 1993, 32(12): 2997-3005. |
32 | DEWACHTERE N V, SANTAELLA F, FROMENT G F. Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil[J]. Chemical Engineering Science, 1999, 54(15): 3653-3660. |
33 | QUINTANA-SOLÓRZANO R, THYBAUT Joris W, MARIN Guy B. A single-event microkinetic analysis of the catalytic cracking of (cyclo)alkanes on an equilibrium catalyst in the absence of coke formation[J]. Chemical Engineering Science, 2007, 62(18-20): 5033-5038. |
34 | Roberto QUINTANA-SOLÓRZANO, THYBAUT Joris W, MARIN Guy B, et al. Single-event microkinetics for coke formation in catalytic cracking[J]. Catalysis Today, 2005, 107-108: 619-629. |
35 | Roberto QUINTANA-SOLÓRZANO, THYBAUT Joris W, GALTIER P, et al. Single-event microkinetics for coke formation during the catalytic cracking of (cyclo)alkane/1-octene mixtures[J]. Catalysis Today, 2007, 127(1/2/3/4): 17-30. |
36 | BORM Rhona VAN, REYNIERS Marie-Francoise, MARIN Guy B. Catalytic cracking of alkanes on FAU: Single-event microkinetic modeling including acidity descriptors[J]. AIChE Journal, 2012, 58(7): 2202-2215. |
37 | WEI W, BENNETT Craig A, TANAKA Ryuzo, et al. Computer aided kinetic modeling with KMT and KME[J]. Fuel Processing Technology, 2008, 89(4): 350-363. |
38 | BROADBELT Linda J, STARK Scott M, KLEIN Michael T. Computer generated pyrolysis modeling: On-the-fly generation of species, reactions, and rates[J]. Industrial & Engineering Chemistry Research, 1994, 33(4): 790-799. |
39 | WATSON Beth A, KLEIN Michael T, HARDING Robert H. Mechanistic modeling of n-heptane cracking on HZSM-5[J]. Industrial & Engineering Chemistry Research, 1996, 35(5): 1506-1516. |
40 | WATSON Beth A, KLEIN Michael T, HARDING Robert H. Mechanistic modeling of a 1-phenyloctane/n-hexadecane mixture on rare earth Y zeolite[J]. Industrial & Engineering Chemistry Research, 1997, 36(8): 2954-2963. |
41 | WATSON Beth A, KLEIN Michael T, HARDING Robert H. Catalytic cracking of alkylcyclohexanes: modeling the reaction pathways and mechanisms[J]. International Journal of Chemical Kinetics, 1997, 29(7): 545-560. |
42 | CHRISTENSEN Gary, APELIAN Minas R, HICKEY Karlton J, et al. Future directions in modeling the FCC process: an emphasis on product quality[J]. Chemical Engineering Science, 1999, 54(13): 2753-2764. |
43 | 孙忠超, 山红红, 刘熠斌, 等. 基于结构导向集总的FCC汽油催化裂解分子尺度动力学模型[J]. 化工学报, 2012, 63(2): 486-492. |
SUN Zhongchao, SHAN Honghong, LIU Yibin, et al. Molecular kinetic model for catalytic pyrolysis of FCC gasoline by structure-oriented lumping[J]. CIESC Journal, 2012, 63(2): 486-492. | |
44 | YANG Bolun, ZHOU Xiaowei, CHEN Chun, et al. Molecule simulation for the secondary reactions of fluid catalytic cracking gasoline by the method of structure oriented lumping combined with Monte Carlo[J]. Industrial & Engineering Chemistry Research, 2008, 47(14): 4648-4657. |
45 | 马法书, 袁志涛, 翁惠新. 分子尺度的复杂反应体系动力学模拟(Ⅰ): 原料分子的Monte Carlo模拟[J]. 化工学报, 2003, 54(11): 1539-1545. |
MA Fashu, YUAN Zhitao, WENG Huixin. Molecular kinetics of complex reaction systems (Ⅰ): Monte Carlo simulation of feedstock[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(11): 1539-1545. | |
46 | 马法书, 袁志涛, 翁惠新. 分子尺度的复杂反应体系动力学模拟(Ⅱ): DCC-Ⅰ反应动力学模型的建立[J]. 化工学报, 2003, 54(11): 1546-1551. |
MA Fashu, YUAN Zhitao, WENG Huixin. Molecular kinetics of complex reaction systems (Ⅱ): Simulation of deep catalytic cracking[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(11): 1546-1551. | |
47 | 陈华, 皮志鹏, 刘逸锋, 等. 基于结构导向集总的催化裂化MIP工艺反应动力学模型. Ⅰ.模型的建立和验证[J]. 石油化工, 2017, 46(4): 395-402. |
CHEN Hua, PI Zhipeng, LIU Yifeng, et al. Reaction kinetic model for catalytic cracking MIP technology using structureoriented lumping method. Ⅰ. Establishment and verification of the model[J]. Petrochemical Technology, 2017, 46(4): 395-402. | |
48 | 刘纪昌, 陈华, 皮志鹏. 基于结构导向集总的催化裂化MIP工艺反应动力学模型. II.工业装置的计算与预测[J]. 石油化工, 2017, 46(5): 519-523. |
LIU Jichang, CHEN Hua, PI Zhipeng. Reaction kinetic model for catalytic cracking MIP technology using structure oriented lumping method. Ⅱ. Simulation of a commercial unit[J]. Petrochemical Technology, 2017, 46(5): 519-523. | |
49 | ZHU Ran, SHEN Bexian, LIU Jichang, et al. A kinetic model for catalytic cracking of vacuum gas oil using a structure-oriented lumping method[J]. Energy Sources, 2012, 34(22): 2066-2072. |
50 | CHEN Jincai, FANG Zhou, QIU Tong. Molecular reconstruction model based on structure oriented lumping and group contribution methods[J]. Chinese Journal of Chemical Engineering, 2018, 26(8): 1677-1683. |
51 | CHEN Zhengyu, FENG Song, ZHANG Linzhou, et al. Molecular-level kinetic modelling of fluid catalytic cracking slurry oil hydrotreating[J]. Chemical Engineering Science,2019, 195: 619-630. |
52 | 陈政宇. 分子尺度反应动力学模型构建及在重油催化转化过程中的应用[D]. 北京: 中国石油大学(北京), 2019. |
CHEN Zhengyu. Development and application of molecular-level kinetic model for catalytic conversion of heavy oil[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
53 | FAULON Jean-Loup, SAULT Allen G. Stochastic generator of chemical structure. 3. Reaction network generation[J]. Journal of Chemical Information Computer Science, 2001, 41(4): 894-908. |
54 | 石铭亮. 复杂反应系统分子尺度反应动力学研究——催化重整单事件反应动力学模型的建立[D]. 上海: 华东理工大学, 2011. |
SHI Mingliang. Study on molecular level kinetics of complex reaction systems—Construction of single-event kinetic model of catalytic reforming[D].Shanghai: East China University of Science and Technology, 2011. | |
55 | 何杉. 催化裂化油浆加工过程分子转化模拟[D]. 北京: 中国石油大学(北京), 2017. |
HE Shan. Molecular-level modeling of FCC slurry oil conversion[D]. Beijing: China University of Petroleum (Beijing), 2017. | |
56 | 徐春明, 张霖宙, 史权. 石油炼化分子管理基础[M]. 北京: 科学出版社, 2019: 72-84. |
XU Chunming, ZHANG Linzhou, SHI Quan. Molecular management of petroleum refining[M]. Beijing: Science Press, 2019: 72-84. | |
57 | PETTI Thomas F, TRAUTH Daniel M, STARK Scott M, et al. CPU issues in the representation of the molecular structure of petroleum resid through characterization, reaction, and Monte Carlo modeling[J]. Energy & Fuels, 1994, 8(3): 570-575. |
58 | CAMPBELL Darin M, KLEIN Michael T. Construction of a molecular representation of a complex feedstock by Monte Carlo and quadrature methods[J]. Applied Catalysis A: General, 1997, 160(1): 41-54. |
59 | HUDEBINE Damien, VERSTRAETE Jan J. Reconstruction of petroleum feedstocks by entropy maximization. Application to FCC gasolines[J]. Oil & Gas Science and Technology, 2011, 66(3): 437-460. |
60 | VERSTRAETE Jan J, SCHNONGS Ph, DULOT H, et al. Molecular reconstruction of heavy petroleum residue fractions[J]. Chemical Engineering Science, 2010, 65(1): 304-312. |
61 | GEEM Kevin M VAN, HUDEBINE Damien, REYNIERS Marie Francoise. Molecular reconstruction of naphtha steam cracking feedstocks based on commercial indices[J]. Computers and Chemical Engineering, 2007, 31(9): 1020-1034. |
62 | GEEM Kevin M VAN, REYNIERS Marie-Francoise, MARIN Guy B, et al. Automatic reaction network generation using RMG for steam cracking of n-hexane[J]. AIChE Journal, 2010, 52(2): 718-730. |
63 | VANDEWIELE Nick M, GEEM Kevin M VAN, REYNIERS Marie-Francoise, et al. Genesys: kinetic model construction using chemo-informatics[J]. Chemical Engineering Journal, 2012, 207/208: 526-538. |
64 | RANGARAJAN Srinivas, KAMINSKI Ted, Eric VAN WYK, et al. Language-oriented rule-based reaction network generation and analysis: algorithms of RING[J]. Computers and Chemical Engineering, 2014, 64: 124-137. |
65 | RANGARAJAN Srinivas, BHAN Aditya, DAOUTIDIS Prodromos. Identification and analysis of synthesis routes in complex catalytic reaction networks for biomass upgrading[J]. Applied Catalysis B Environmental, 2014, 145: 149-160. |
66 | RANGARAJAN Srinivas, BHAN Aditya, DAOUTIDIS Prodromos. Language-oriented rule-based reaction network generation and analysis: description of RING[J]. Computers and Chemical Engineering, 2012, 45: 114-123. |
67 | RANGARAJAN Srinivas, BHAN Aditya, DAOUTIDIS Prodromos. Language-oriented rule-based reaction network generation and analysis: applications of RING[J]. Computers and Chemical Engineering, 2012, 46(15): 141-152. |
[1] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[2] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[3] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[4] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[5] | CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei. Research progress in high value chemical recycling of waste polyolefins [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978. |
[6] | DENG Jian, WANG Kai, LUO Guangsheng. Development and consideration of adiabatic continuous microreaction technology for safe production of nitro compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3923-3925. |
[7] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
[8] | LYU Chengyuan, ZHANG Han, YANG Mingwang, DU Jianjun, FAN Jiangli. Recent advances of dioxetane-based afterglow system for bio-imaging [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4108-4122. |
[9] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[10] | WANG Junjie, PAN Yanqiu, NIU Yabin, YU Lu. Molecular level catalytic reforming model construction and application [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3404-3412. |
[11] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[12] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
[13] | ZHANG Yaodan, SUN Ruoxi, CHEN Pengcheng. Advances of multi-enzyme co-immobilization carrier based on cascade reactions [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3167-3176. |
[14] | LI Ruidong, HUANG Hui, TONG Guohu, WANG Yueshe. Hygroscopic properties and corrosion behavior of ammonium salt in a crude oil distillation column [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2809-2818. |
[15] | ZHANG Peng, PAN Yuan. Progress of single atom catalysts in electrocatalytic oxygen reduction to hydrogen peroxide [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2944-2953. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |