Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (4): 2034-2047.DOI: 10.16085/j.issn.1000-6613.2020-2319
• Special column:Industrial catalysis • Previous Articles Next Articles
BAO Yuxiang1(), MA Hongfei2, TUO Yongxiao1, QI Yanying2, FENG Xiang1(), YANG Chaohe1, CHEN De1,2()
Received:
2020-11-19
Online:
2021-04-14
Published:
2021-04-05
Contact:
FENG Xiang,CHEN De
鲍玉香1(), 马宏飞2, 脱永笑1, 祁艳颖2, 冯翔1(), 杨朝合1, 陈德1,2()
通讯作者:
冯翔,陈德
作者简介:
鲍玉香(1994—),女,博士研究生,研究方向为工业催化。E-mail:基金资助:
CLC Number:
BAO Yuxiang, MA Hongfei, TUO Yongxiao, QI Yanying, FENG Xiang, YANG Chaohe, CHEN De. Research progress on catalyst for the synthesis of vinyl chloride monomer (VCM)[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2034-2047.
鲍玉香, 马宏飞, 脱永笑, 祁艳颖, 冯翔, 杨朝合, 陈德. 氯乙烯单体合成催化剂研究进展[J]. 化工进展, 2021, 40(4): 2034-2047.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2319
1 | DAVIES Catherine J, MIEDZIAK Peter J, BRETT Gemma L, et al. Vinyl chloride monomer production catalysed by gold: a review[J]. Chinese Journal of Catalysis, 2016, 37(10): 1600-1607. |
2 | XU Xiaolong, ZHAO Jia, LU Chunshan, et al. Improvement of the stability of Hg/AC catalysts by CsCl for the high-temperature hydrochlorination of acetylene[J]. Chemistry Letters, 2016, 27(6): 822-826. |
3 | ZHANG Haiyang, DAI Bin, WANG Xugen, et al. Non-mercury catalytic acetylene hydrochlorination over bimetallic Au-Co(Ⅲ)/SAC catalysts for vinyl chloride monomer production[J]. Green Chemistry, 2013, 15(3): 829-836. |
4 | 乔贤亮, 关庆鑫, 李伟, 乙炔氢氯化反应中无汞催化剂的研究进展[J]. 中国科学: 化学, 2019, 49(11): 1385-1400. |
QIAO Xianliang, GUAN Qingxin, LI Wei. Research progress of mercury-free catalysts for acetylene hydrochlorination[J]. Scientia Sinica Chimica, 2019, 49(11): 1385-1400. | |
5 | MA Hongfei, WANG Yalan M, QI Yanying, et al. A critical review of catalysis for ethylene oxychlorination[J]. ACS Catalysis, 2020, 10(16): 9299-9319. |
6 | FENES Endre, QI Yanying, MA Hongfei, et al. Prediction and tuning of the defects in the redox catalysts: ethylene oxychlorination[J]. ChemCatChem, 2021,13(1): 221-226. |
7 | JOHNSTON Peter, CARTHEY Nicholas, HUTCHINGS Graham J. Discovery, development, and commercialization of gold catalysts for acetylene hydrochlorination[J]. Journal of the American Chemical Society, 2015, 137(46): 14548-14557. |
8 | MALTA Grazia, KONDRAT Simon A, FREAKLEY Simon J, et al. Identification of single-site gold catalysis in acetylene hydrochlorination[J]. Science, 2017, 355(6332): 1399-1403. |
9 | ZHAO Jia, YU Yi, XU Xiaolong, et al. Stabilizing Au(Ⅲ) in supported-ionic-liquid-phase (SILP) catalyst using CuCl2via a redox mechanism[J]. Applied Catalysis B: Environmental, 2017, 206: 175-183. |
10 | LIN Ronghe, KAISER Selina K, HAUERT Rol, et al. Descriptors for high-performance nitrogen-doped carbon catalysts in acetylene hydrochlorination[J]. ACS Catalysis, 2018, 8(2): 1114-1121. |
11 | YANG Lifeng, YANG Qiwei, HU Jingyi, et al. Metal nanoparticles in ionic liquid-cosolvent biphasic systems as active catalysts for acetylene hydrochlorination[J]. AIChE Journal, 2018, 64(7): 2536-2544. |
12 | 晓玉. 电石法PVC行业汞公约履约稳步推进[J]. 化工管理, 2014(4):21-22. |
XIAO Yu. Steady progress in the implementation of the Mercury Convention for the calcium carbide PVC industry[J]. Chemical Enterprise Management, 2014(4): 21-22. | |
13 | WAKIYAMA S, UCHIDA K. Process for oxychlorination of ethylene: US3624170[P]. 1971-11-30. |
14 | SCHARFE Matthias, LIRA-PARADA Pedro A, PAUNOVIC Vladimir, et al. Oxychlorination-dehydrochlorination chemistry on bifunctional ceria catalysts for intensified vinyl chloride production[J]. Angewandte Chemie: International Edition, 2016, 128(9): 3120-3124. |
15 | JONES M E, OLKEN M M, HICKMAN D A. Process for the conversion of ethylene to vinyl chloride and novel catalyst compositions useful for such process: US6909024[P]. 2005-06-21. |
16 | SCHARFE Matthias, LIRA-PARADA Pedro A, AMRUTE Amol P, et al. Lanthanide compounds as catalysts for the one-step synthesis of vinyl chloride from ethylene[J]. Journal of Catalysts, 2016, 344: 524-534. |
17 | MUDDADA N B, OLSBYE U, CACCIALUPI L, et al. Influence of additives in defining the active phase of the ethylene oxychlorination catalyst[J]. Physical Chemistry Chemical Physics, 2010, 12(21): 5605-5618. |
18 | MUDDADA N B, FUGLERUD T, LAMBERTI C, et al. Tuning the activity and selectivity of CuCl2/γ-Al2O3 ethene oxychlorination catalyst by selective promotion[J]. Topics in Catalysis, 2014, 57: 741-756. |
19 | SCHOLTEN Fabian, SINEV Ilya, BERNAL Miguel, et al. Plasma-modified dendritic Cu catalyst for CO2 electroreduction[J]. ACS Catalysis, 2019, 9(6): 5496-5502. |
20 | ROOIJEN F VAN. E, BRUIJN A. DE, JOHAN J. Catalytic oxychlorination: US20090054708[P]. 2009-02-26. |
21 | RUBINI, Carlo, MALENTACCHI M. Oxychlorination catalytic composition for controlling exothermic reactions in a fixed bed: EP19990126143[P]. 2004-10-20. |
22 | CLEGG I M, HARDMAN R. Vinyl chloride production process: EP0667846[P]. 1998-09-07. |
23 | BAIDOOA M F, FENESA E, ROUT K R, et al. On the effects of K and La co-promotion on CuCl2/γ-Al2O3 catalysts for the oxychlorination of ethylene[J]. Catalysis Today, 2018, 299: 164-171. |
24 | MA Hongfei, SOLLUN Erling S, ZHANG Wei, et al. Kinetic modeling of dynamic changing active sites in a Mars-van Krevelen type reaction: ethylene oxychlorination on K-doped CuCl2/Al2O3[J]. Chemical Engineering Journal, 2021, 407: 128013. |
25 | MA Hongfei, FENES Endre, QI Yanying, et al. Understanding of K and Mg co-promoter effect in ethylene oxychlorination by operando UV-vis-NIR spectroscopy[J]. Catalysis Today, 2020, . |
26 | ROUT K R, FENES E, BAIDOO M F, et al. Highly active and stable CeO2-promoted CuCl2/Al2O3 oxychlorination catalysts developed by rational design using a rate diagram of the catalytic cycle[J]. ACS Catalysis, 2016, 6(10): 7030-7039. |
27 | HAN Q, CHEN N, ZHANG J, et al. Graphene/graphitic carbon nitride hybrids for catalysis[J]. Materials Horizons, 2017, 4(5): 832-850. |
28 | CHEN Xuli, MA Yingying. Wearable lithium-ion batteries based on carbon nanotubes and graphene[J]. Advanced Materials Technologies, 2018, 3(10): 1800041. |
29 | ZHANG Ye, JIAO Yiding, LIAO Meng, et al. Carbon nanomaterials for flexible lithium-ion batteries[J]. Carbon, 2017, 124: 79-88. |
30 | XU Jinming, ZHAO, Xiaochen, WANG Aiqin, et al. Synthesis of nitrogen-doped ordered mesoporous carbons for catalytic dehydrochlorination of 1,2-dichloroethane[J]. Carbon, 2014, 80: 610-616. |
31 | ZHAO Wei, SUN Mengxia, ZHANG Haiyang, et al. Catalytic dehydrochlorination of 1,2-dichloroethane to produce vinyl chloride over N-doped coconut activated carbon[J]. RSC Advances, 2015, 5(126): 104071-104078. |
32 | SHALYGIN A S, MALYSHEVA L V, PAUKSHTIS E A. Mechanism of 1,2-dichloroethane dehydrochlorination on the acid sites of oxide catalysts as studied by IR spectroscopy[J]. Kinetics and Catalysis, 2011, 52(2): 305-315. |
33 | BOUDEWIJNS Tom, PICCININI Marco, DEGRAEVE Piccinini, et al. Pathway to vinyl chloride production via dehydrochlorination of 1,2-dichloroethane in ionic liquid media[J]. ACS Catalysis, 2015, 5(7): 4043-4047. |
34 | SCHARFE Matthias, Marçal CAPDEVILA-CORTADA, KONDRATENKO Vita A, et al. Mechanism of ethylene oxychlorination on ceria[J]. ACS Catalysis, 2018, 8(4): 2651-2663. |
35 | SCHARFE Matthias, Vladimir PAUNOVIĆ, MITCHELL Sharon, et al. Dual catalyst system for selective vinyl chloride production via ethene oxychlorination[J]. Catalysis Science & Technology, 2020, 10(2): 560-575. |
36 | VALECHHA D, LOKHANDE S, KLEMENTOVA M, et al. Study of nano-structured ceria for catalytic CO oxidation[J]. Materials Chemistry, 2011, 21(11): 3718-3725. |
37 | AMRUTE Amol P, MONDELLI Cecilia, MOSER Maximilian, et al. Performance, structure, and mechanism of CeO2 in HCl oxidation to Cl2[J]. Journal of Catalysis, 2012, 286: 287-297. |
38 | TAMM K, KÜNGAS R, GORTE R J, et al. Solid oxide fuel cell anodes prepared by infiltration of strontium doped lanthanum vanadate into doped ceria electrolyte[J]. Electrochimica Acta, 2013, 106: 398-405. |
39 | MOSER M, AMRUTE A P, PÉREZ-RAMÍREZ J. Impact of feed impurities on catalysts for chlorine recycling[J]. Applied Catalysis B: Environmental, 2015, 162: 602-609. |
40 | MONTINI Tiziano, MELCHIONNA Michele, MONAI Matteo, et al. Fundamentals and catalytic applications of CeO2-based materials[J]. Chemical Reviews, 2016, 116(10): 5987-6041. |
41 | MA Hongfei, MA Guoyan, QI Yanying, et al. N-doped carbon assisted one-pot tandem reaction for vinyl chloride production via ethylene oxychlorination[J]. Angewandte Chemie: International Edition, 2020, 59(49): 22080-22085. |
42 | HUTCHINGS G J. Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts[J]. Journal of Catalysis,1985, 96(1): 292-295. |
43 | CONTE Marco, DAVIES Catherine J, MORGAN David J, et al. Aqua regia activated Au/C catalysts for the hydrochlorination of acetylene[J]. Journal of Catalysis, 2013, 297: 128-136. |
44 | HUTCHINGS G J. Au catalysts for acetylene hydrochlorination and carbon monoxide oxidation[J]. Topics in Catalysis, 2014, 57(14/15/16):1265-1271. |
45 | MALTA Grazia, FREAKLEY Simon J, KONDRAT Simon A, et al. Acetylene hydrochlorination using Au/carbon: a journey towards single site catalysis[J]. Chemical Communications, 2017, 53(86): 11733-11746. |
46 | DUAN Xinping, TIAN Xuelin, KE Jinhuo, et al. Size controllable redispersion of sintered Au nanoparticles by using iodohydrocarbon and its implications[J]. Chemical Science, 2016, 7: 3181-3187. |
47 | WANG Bolin, ZHAO Jia, YUE Yuxue, et al. Carbon with surface-enriched nitrogen and sulfur supported Au catalysts for acetylene hydrochlorination[J]. ChemCatChem, 2019, 11(3): 894. |
48 | ZHOU Kai, JIA Jinchao, LI Chunhua, et al. A low content Au-based catalyst for hydrochlorination of C2H2 and its industrial scale-up for future PVC processes[J]. Green Chemistry, 2015, 17: 356-364. |
49 | LAN Guojun, YE Qingfeng, ZHU Yihan, et al. Single-site Au/carbon catalysts with single-atom and Au nanoparticles for acetylene hydrochlorination[J]. ACS Applied Nano Materials, 2020, 3(3): 3004-3010. |
50 | WANG Xiaolong, LAN Guojun, CHENG Zaizhe, et al. Carbon-supported ruthenium catalysts prepared by a coordination strategy for acetylene hydrochlorination[J]. Chinese Journal of Catalysis, 2020, 41(11): 1683-1691. |
51 | LI Hang, WU Botao, WANG Jianhui, et al. Efficient and stable Ru(Ⅲ)-choline chloride catalyst system with low Ru content for non-mercury acetylene hydrochlorination[J]. Chinese Journal Catalysis, 2018, 39(11): 1770-1781. |
52 | ZHU Mingyuan, KANG Lihua, SU Yan, et al. MClx (M=Hg, Au, Ru; x=2, 3) catalyzed hydrochlorination of acetylene—A density functional theory study[J]. Canadian Journal of Chemistry, 2013, 91(2):120-125. |
53 | PU Yanfeng, ZHANG Jinli, YU Li, et al. Active ruthenium species in acetylene hydrochlorination[J]. Applied Catalysis, A: General, 2014, 488: 28-36. |
54 | ZHANG Haiyang, LI Wei, JIN Yunhe, et al. Ru-Co(Ⅲ)-Cu(Ⅱ)/SAC catalyst for acetylene hydrochlorination[J]. Applied Catalysis, B: Environmental, 2016, 189: 56-64. |
55 | HOU Lijun, ZHANG Jinli, PU Yanfeng, et al. Effects of nitrogen-dopants on Ru-supported catalysts for acetylene hydrochlorination[J]. RSC Advances, 2016, 6(22): 18026-18032. |
56 | WANG Xiaolong, LAN Guojun, LIU huazhang, et al. Effect of acidity and ruthenium species on catalytic performance of ruthenium catalysts for acetylene hydrochlorination[J]. Catalysis Science & Technology, 2018,8(23): 6143-6149. |
57 | LAN Guojun, YANG Yong, WANG Xiaolong, et al. Direct synthesis of mesoporous nitrogen doped Ru-carbon catalysts with semi-embedded Ru nanoparticles for acetylene hydrochlorination[J]. Microporous and Mesoporous Materials, 2018, 264: 248-253. |
58 | WANG Bolin, YUE Yuxue, WANG Saisai, et al. Constructing and controlling of ruthenium active phases for acetylene hydrochlorination[J]. Chemical Communications, 2020, 56 (73): 10722-10725. |
59 | LI Jian, ZHANG Haiyang, LI Linfeng, et al. Synergistically catalytic hydrochlorination of acetylene over the highly dispersed Ru active species embedded in P-containing ionic liquids[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(27): 10173-10184. |
60 | London Bullion Market Association (LBMA). Precious metal prices. . |
61 | KAISER Selina K, FAKO Edvin, MANZOCCHI Gabriele, et al. Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production[J]. Nature Catalysis, 2020, 3(4): 376-385. |
62 | SUN Xi, DAWSON Simon R, PARMENTIER Tanja E. Facile synthesis of precious-metal single-site catalysts using organic solvents[J]. Nature Chemistry, 2020, 12: 560-567. |
63 | 郭燕燕, 刘鹰, 胡瑞生, 等. 乙炔氢氯化反应非贵金属无汞催化剂的研究进展[J]. 化工进展, 2014, 33(6):1486-1490. |
GUO Yanyan, LIU Ying, HU Ruishenget al. Research progress of metal mercury-free catalysts of non-noble metal for acetylene hydrochlorination[J]. Chemical Industry and Engineering Progress, 2014, 33(6):1486-1490. | |
64 | ZHOU Xiaofei, XU Shengang, LIU Yingliang, et al. Mechanistic study on metal-free acetylene hydrochlorination catalyzed by imidazolium-based ionic liquids[J]. Molecular Catalysis, 2018, 461: 73-79. |
65 | YUE Yuxue, WANG Bolin, SHENG Gangfeng, An ultra-high H2S-resistant gold-based imidazolium ionic liquid catalyst for acetylene hydrochlorination[J]. New Journal of Chemistry, 2019, 43(32): 12767-12775 |
66 | LI Yu, DONG Yanzhao, LI Wei, et al. Improvement of imidazolium-based ionic liquids on the activity of ruthenium catalyst for acetylene hydrochlorination[J]. Molecular Catalysis, 2017, 443: 220-227. |
67 | YANG Lifeng, YANG Qiwei, HU Jingyi, et al. Metal nanoparticles in ionic liquid-co-solvent biphasic systems as active catalysts for acetylene hydrochlorination[J]. AIChE Journal, 2018, 64(7): 2536-2544. |
68 | REN Yanfei, WU Botao, WANG Fumin, et al. Chlorocuprate (Ⅰ) ionic liquid as an efficient and stable Cu-based catalyst for hydrochlorination of acetylene[J]. Catalysis Science & Technology, 2019, 9(11): 2868-2878. |
69 | WANG Yan, NIAN Yao, ZHANG Jinli, et al. MOMTPPC improved Cu-based heterogeneous catalyst with high efficiency for acetylene hydrochlorination[J]. Molecular Catalysis, 2019, 479: 110612. |
70 | HU Yubin, WANG Yan, WANG Yulian, et al. High performance of supported Cu-based catalysts modulated via phosphamide coordination in acetylene hydrochlorination[J]. Applied Catalysis A: General, 2020, 591: 117408. |
71 | LI Xingyun, PAN Xiulian, YU Liang, et al. Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene[J]. Nature Communications, 2014, 5(1): 3688. |
72 | MEI Shuang, GU Junjie, MA Tengzhou, et al. N-doped activated carbon from used dyeing wastewater adsorbent as a metal-free catalyst for acetylene hydrochlorination[J]. Chemical Engineering Journal, 2019, 371: 118-129. |
73 | DONG Xiaobin, CHAO Songlin, WAN Fanan, et al. Sulfur and nitrogen co-doped mesoporous carbon with enhanced performance for acetylene hydrochlorination[J]. Journal of Catalysis, 2018, 359: 161-170. |
74 | ZHAO Jia, WANG Bolin, YUE Yuxue, et al. Nitrogen-and phosphorus-codoped carbon-based catalyst for acetylene hydrochlorination[J]. Journal of Catalysis, 2019, 373: 240-249. |
75 | QIU Yiyang, FAN Dong, LAN Guojun, et al. Generalized reactivity descriptor of defective carbon catalysts for acetylene hydrochlorination: the ratio of sp2: sp3 hybridization[J]. Chemical Communications, 2020, 56(94): 14877-14880. |
76 | SHEN Zhaobin, ZHAO Hong, LIU Yue, et al. Mercury-free nitrogen-doped activated carbon catalyst: an efficient catalyst for the catalytic coupling reaction of acetylene and ethylene dichloride to synthesize the vinyl chloride monomer[J]. Reaction Chemistry & Engineering, 2018, 3(1): 34-40. |
77 | LIN Ronghe, AMRUTE Amol P, PÉREZ-RAMÍREZ J. Halogen-mediated conversion of hydrocarbons to commodities[J]. Chemical Review, 2017, 117(5): 4182-4247. |
[1] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[2] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[3] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[4] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[5] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[6] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[7] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
[8] | TAN Jihuai, YU Min, ZHANG Tongtong, HUANG Nengkun, WANG Ziwen, ZHU Xinbao. Manufacturing of tannin polypropoxy ether carboxylates as efficient and improved migration resistance plasticizers for PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4847-4855. |
[9] | LI Zhiyuan, HUANG Yaji, ZHAO Jiaqi, YU Mengzhu, ZHU Zhicheng, CHENG Haoqiang, SHI Hao, WANG Sheng. Characterization of heavy metals during co-pyrolysis of sludge with PVC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4947-4956. |
[10] | LYU Chengyuan, ZHANG Han, YANG Mingwang, DU Jianjun, FAN Jiangli. Recent advances of dioxetane-based afterglow system for bio-imaging [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4108-4122. |
[11] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[12] | WANG Zhicai, LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu. Synthesis and performance of a superplasticizer based on coal-based humic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3634-3642. |
[13] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[14] | ZHAN Yong, WANG Hui, WEI Tingting, ZHU Xingyu, WANG Xiankai, CHEN Sisi, DONG Bin. In situ reduction effect of Mn2+ enhanced ozone conditioning on sludge in biological treatment process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3253-3260. |
[15] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |