Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (3): 1594-1603.DOI: 10.16085/j.issn.1000-6613.2020-0880
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
DONG Yanmei1(), AN Yanxia1,2(), MA Yangyang1, ZHANG Jian1, LI Mengqin1
Received:
2020-05-21
Online:
2021-03-17
Published:
2021-03-05
Contact:
AN Yanxia
董艳梅1(), 安艳霞1,2(), 马阳阳1, 张剑1, 李梦琴1
通讯作者:
安艳霞
作者简介:
董艳梅(1995—),女,硕士研究生,研究方向为农产品加工。E-mail:基金资助:
CLC Number:
DONG Yanmei, AN Yanxia, MA Yangyang, ZHANG Jian, LI Mengqin. Research progress on deep eutectic solvent of lignocellulose pretreatment[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1594-1603.
董艳梅, 安艳霞, 马阳阳, 张剑, 李梦琴. 深度共熔溶剂预处理木质纤维素生物质研究进展[J]. 化工进展, 2021, 40(3): 1594-1603.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0880
生物质 | 预处理试剂及条件 | 木质素去除率/% | 半纤维素去除率/% | 纤维素转化率/% |
---|---|---|---|---|
玉米秸秆 | ChCl-甲酸[(1∶2)/130℃] | 23.8 | 66.2 | 99[ |
玉米芯 | 未处理 | 0 | 0 | 32.8[ |
ChCl-丙三醇[(1∶2)/80℃] | 20.5 | 2.7 | 39.9[ | |
ChCl-丙三醇[(1∶2)/115℃] | 26.3 | 9,8 | 79.1[ | |
ChCl-丙三醇[(1∶2)/150℃] | 59.0 | 47.5 | 91.5[ | |
ChCl-尿素[(1∶2)/80℃] | 27.1 | 1.4 | 51.0[ | |
ChCl-尿素[(1∶2)/115℃] | 37.5 | 14.2 | 58.6[ | |
ChCl-咪唑[(3∶7)/115℃] | 76.7 | 41.5 | 94.0[ | |
ChCl-咪唑[(3∶7)/150℃] | 84.9 | 85.3 | 94.6[ | |
水稻秸秆 | 未处理 | 0 | 0 | 23.9[ |
乳酸-乙二醇[(1∶1)/120℃] | 41.4 | 51.9 | 58.2[ | |
乳酸-丙三醇[(1∶1)/120℃] | 30.7 | 28.7 | 56.4[ | |
乳酸-丙三醇[(1∶1)/120℃] | 27.9 | 25.7 | 47.0[ | |
乳酸-甲酰胺[(1∶1)/120℃] | 46.4 | 31.7 | 50.1[ | |
乳酸-尿素[(1∶1)/120℃] | 28.8 | 19.1 | 23.4[ | |
乳酸-盐酸胍[(1∶1)/120℃] | 61.0 | 87.7 | 80.3[ | |
ChCl-乙二醇[(1∶1)/120℃] | 28.7 | 20.8 | 33.2[ | |
ChCl-1,2-丙二醇[(1∶1)/120℃] | 32.9 | 26.1 | 36.3[ | |
ChCl-1,3-丙二醇[(1∶1)/120℃] | 34.2 | 26.9 | 41.8[ | |
ChCl-1,3-乙醇酸[(1∶1)/120℃] | 36.9 | 78.6 | 79.1[ | |
ChCl-乳酸[(1∶1)/120℃] | 25.4 | 80.7 | 83.8[ | |
ChCl-2-氯丙酸[(1∶1)/120℃] | 13 | 99.7 | 82.5[ | |
ChCl-2-草酸[(1∶1)/120℃] | 9.3 | 96.9 | 83.9[ | |
柳枝稷 | ChCl-对羟基苯甲醇[(1∶1)/160℃] | 0.4 | 28.6 | 32.0[ |
ChCl-邻苯二酚[(1∶1)/160℃] | 48.9 | 43.2 | 77.0[ | |
ChCl-香草醛醇[(1∶2)/160℃] | 52.5 | 49.6 | 79.8[ | |
ChCl-对香豆酸醇[(1∶1)/160℃] | 60.6 | 70.7 | 85.7[ |
生物质 | 预处理试剂及条件 | 木质素去除率/% | 半纤维素去除率/% | 纤维素转化率/% |
---|---|---|---|---|
玉米秸秆 | ChCl-甲酸[(1∶2)/130℃] | 23.8 | 66.2 | 99[ |
玉米芯 | 未处理 | 0 | 0 | 32.8[ |
ChCl-丙三醇[(1∶2)/80℃] | 20.5 | 2.7 | 39.9[ | |
ChCl-丙三醇[(1∶2)/115℃] | 26.3 | 9,8 | 79.1[ | |
ChCl-丙三醇[(1∶2)/150℃] | 59.0 | 47.5 | 91.5[ | |
ChCl-尿素[(1∶2)/80℃] | 27.1 | 1.4 | 51.0[ | |
ChCl-尿素[(1∶2)/115℃] | 37.5 | 14.2 | 58.6[ | |
ChCl-咪唑[(3∶7)/115℃] | 76.7 | 41.5 | 94.0[ | |
ChCl-咪唑[(3∶7)/150℃] | 84.9 | 85.3 | 94.6[ | |
水稻秸秆 | 未处理 | 0 | 0 | 23.9[ |
乳酸-乙二醇[(1∶1)/120℃] | 41.4 | 51.9 | 58.2[ | |
乳酸-丙三醇[(1∶1)/120℃] | 30.7 | 28.7 | 56.4[ | |
乳酸-丙三醇[(1∶1)/120℃] | 27.9 | 25.7 | 47.0[ | |
乳酸-甲酰胺[(1∶1)/120℃] | 46.4 | 31.7 | 50.1[ | |
乳酸-尿素[(1∶1)/120℃] | 28.8 | 19.1 | 23.4[ | |
乳酸-盐酸胍[(1∶1)/120℃] | 61.0 | 87.7 | 80.3[ | |
ChCl-乙二醇[(1∶1)/120℃] | 28.7 | 20.8 | 33.2[ | |
ChCl-1,2-丙二醇[(1∶1)/120℃] | 32.9 | 26.1 | 36.3[ | |
ChCl-1,3-丙二醇[(1∶1)/120℃] | 34.2 | 26.9 | 41.8[ | |
ChCl-1,3-乙醇酸[(1∶1)/120℃] | 36.9 | 78.6 | 79.1[ | |
ChCl-乳酸[(1∶1)/120℃] | 25.4 | 80.7 | 83.8[ | |
ChCl-2-氯丙酸[(1∶1)/120℃] | 13 | 99.7 | 82.5[ | |
ChCl-2-草酸[(1∶1)/120℃] | 9.3 | 96.9 | 83.9[ | |
柳枝稷 | ChCl-对羟基苯甲醇[(1∶1)/160℃] | 0.4 | 28.6 | 32.0[ |
ChCl-邻苯二酚[(1∶1)/160℃] | 48.9 | 43.2 | 77.0[ | |
ChCl-香草醛醇[(1∶2)/160℃] | 52.5 | 49.6 | 79.8[ | |
ChCl-对香豆酸醇[(1∶1)/160℃] | 60.6 | 70.7 | 85.7[ |
1 | AGRAWAL R, VERMA A K, SATLEWAL A. Application of nanoparticle-immobilized thermostable beta-glucosidase for improving the sugarcane juice properties[J]. Innovative Food Science & Emerging Technologies, 2016, 33: 472-482. |
2 | WANG Yanting, FAN Chunfen, HU Huizhen, et al. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops[J]. Biotechnology Advances, 2016, 34: 997-1017. |
3 | DUTTA T, PAPA G, WANG Eileen, et al. Characterization of lignin streams during bionic liquid-based pretreatment from grass, hardwood and softwood[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 3079-3090. |
4 | YANG Bin, WYMAN C E. Pretreatment: the key to unlocking low-cost cellulosic ethanol[J]. Biofuel Bioproduct Bioresource, 2008, 2: 26-40. |
5 | ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003, 1: 70-71. |
6 | XU Guochao, DING Jicai, HAN Ruizhi, et al. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation[J]. Bioresource Technology, 2016, 203: 364-369. |
7 | GORKE J T, SRIENC F, KAZLAUSKAS R J. Deep eutectic solvents for candida antarctica lipase B-catalyzed reactions[J]. American Chemical Society, 2010, 1038: 169-180. |
8 | MBOUS Y P, HAYYAN M, HAYYAN A, et al. Applications of deep eutectic solvents in biotechnology and bioengineering-promises and challenges[J]. Biotechnology Advances, 2017, 35: 105-134. |
9 | DE OLIVEIRA VIGIE K, CHATEL G, JÉRÔME F, et al. Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations[J]. Chemcatchem, 2015, 7: 1250-1260. |
10 | LORES H, ROMERO V, COSTAS I, et al. Natural deep eutectic solvents in combination with ultrasonic energy as a green approach for solubilisation of proteins: application to gluten determination by immunoassay[J]. Talanta, 2017, 162: 453-459. |
11 | TANG Xing, ZUO Miao, LI Zheng, et al. Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents[J]. Chemsuschem, 2017, 10: 2696-2706. |
12 | OSCH D D VAN, KOLLAU L J B M, BRUINHORST A VAN DEN, et al. Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation[J]. Physical Chemistry Chemical Physics, 2017, 19: 2636-2665. |
13 | SMITH E L, ABBOTT A P, RYDER K S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114: 11060-11082. |
14 | PROCENTESE A, JOHNSON E, ORR V, et al. Deep eutectic solvent pretreatment and subsequent saccharification of corncob[J]. Bioresource Technology, 2015, 192: 31-36. |
15 | 张成武. 低共熔溶剂预处理木质纤维素的研究[D]. 天津: 天津大学, 2016. |
ZHANG Chengwu. Study on the pretreatment of lignocellulose by deep eutectic solvents[D]. Tianjin: Tianjin University, 2016. | |
16 | ABOHAMAD A, HAYYAN M, ALSAADI M A, et al. Potential applications of deep eutectic solvents in nanotechnology[J]. Chemical Engineering Journal, 2015, 273: 551-567. |
17 | AGRAWAL R, GAUR R, MATHUR A, et al. Improved saccharification of pilot-scale acid pretreated wheat straw by exploiting the synergistic behavior of lignocellulose degrading enzymes[J]. RSC Advances, 2015, 5: 71462-71471. |
18 | CAPOLUPO L, FARACO V. Green methods of lignocellulose pretreatment for biorefinery development[J]. Applied Microbiology and Biotechnology, 2016, 100: 9451-9467. |
19 | DEN W, SHARMA V K, Mengshan LEE, et al. Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to wnergy and value-added chemicals[J]. Frontiers in Chemistry, 2018, 6: 141. |
20 | SEIDL P R, GOULART A K. Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts[J]. Current Opinion in Green and Sustainable Chemistry, 2016, 2: 48-53. |
21 | SATLEWAL A, AGRAWAL R, BHAGIA S, et al. Rice straw as a feedstock for biofuels: availability, recalcitrance, and chemical properties[J]. Biofuels Bioproducts & Biorefining, 2018, 12: 83-107. |
22 | AKINOSHO H, RYDAZAK T, BOROLE A, et al. Toxicological challenges to microbial bioethanol production and strategies for improved tolerance[J]. Ecotoxicology, 2015, 24: 2156-2174. |
23 | Chang Geun YOO, PU Yunqiao, RAGAUSKAS A J. Ionic liquids: promising green solvents for lignocellulosic biomass utilization[J]. Current Opinion in Green and Sustainable Chemistry, 2017, 5: 5-11. |
24 | LOOW Yu-Loong, Eng Kein NEW, YANG Ge Hoa, et al. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion[J]. Cellulose, 2017, 24: 3591-3618. |
25 | KUMAR A K, PARIKH B S, PRAVAKAR M. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue[J]. Environmental Science and Pollution Research, 2016, 23: 9265-9275. |
26 | ZULKEFLI S, ABDULMALEK E, RAHMAN M B A. Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk[J]. Renewable Energy, 2017, 107: 36-41. |
27 | HOU Xuedan, FENG Guojian, YE Mei, et al. Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment[J]. Bioresource Technology, 2017, 238: 139-146. |
28 | SARMAD S, XIE Yujiao, MIKKOLA J P, et al. Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity[J]. New Journal of Chemistry, 2017, 41: 290-301. |
29 | PANDEY A, BHAWNA, DHINGRA D, et al. Hydrogen bond donor/acceptor cosolvent-modified choline chloride-based deep eutectic solvents[J]. Journal of Physical Chemistry B, 2017, 121: 4202-4212. |
30 | KILPELAINEN I, XIE Haibo, KING A, et al. Dissolution of wood in ionic liquids[J]. Journal of Agricutural Food Chemistry, 2007, 55: 9142-9148. |
31 | HOU Xuedan, SMITH T J, LI Ning, et al. Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin[J]. Biotechnology and Bioengineering, 2012, 109: 2484-2493. |
32 | Sang Hyun LEE, DOHERTY T V, LINHARDT R J, et al. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis[J]. Biotechnology and Bioengineering, 2009, 102: 1368-1376. |
33 | BHAGIA S, LI Hongjia, GAO Xiadi, et al. Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance[J]. Biotechnology for Biofuels, 2016, 9: 245. |
34 | DUMITRACHE A, TOLBERT A, NATZKE J, et al. Cellulose and lignin colocalization at the plant cell wall surface limits microbial hydrolysis of Populus biomass[J]. Green Chemistry, 2017, 19: 2275-2285. |
35 | LI Mi, PU Yunqiao, RAGAUSKAS A J. Current understanding of the correlation of lignin structure with biomass recalcitrance[J]. Frontiers in Chemistry, 2016, 4: 45. |
36 | KIM Kwang Ho, DUTTA T, SUN Jian, et al. Biomass pretreatment using deep eutectic solvents from lignin derived phenols[J]. Green Chemistry, 2018, 20: 809-815. |
37 | LIU Yongzhuang, CHEN Wenshuai, XIA Qinqin, et al. Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent[J]. ChemSusChem, 2017, 10: 1692-1700. |
38 | KARIMI K, TAHERZADEH M J. A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity[J]. Bioresource Technology, 2016, 200: 1008-1018. |
39 | PROCENTESE A, RAGANATI F, OLIVIERI G, et al. Deep eutectic solvents pretreatment of agro-industrial food waste[J]. Biotechnology for Biofuels, 2018, 11: 37. |
40 | ZHANG Qinghua, BENOIT M, DE OLIVEIRA VIGIE K, et al. Green and inexpensive choline-derived solvents for cellulose decrystallization[J]. Chemistry - a European Journal, 2012, 18: 1043-1046. |
41 | REN Hongwei, CHEN Chunmao, GUO Shaohui, et al. Synthesis of a novel allyl-functionalized deep eutectic solvent to promote dissolution of cellulose[J]. Bioresources, 2016, 11: 8457-8469. |
42 | REN Hongwei, CHEN Chunmao, WANG Qinghong, et al. The properties of choline chloride-based deep eutectic solvents and their performance in the dissolution of cellulose[J]. Bioresources, 2016, 11: 5435-5451. |
43 | JABLONSKY M, SKULCOVA A, KAMENSKA L, et al. Deep eutectic solvents: fractionation of wheat straw[J]. Bioresources, 2015, 10: 8039-8047. |
44 | NOR N A M, MSUTAPHA W A W, HASSAN O. Deep eutectic solvent (DES) as a pretreatment for oil palm empty fruit bunch (OPEFB) in sugar production, in molecular and cellular life sciences: infectious diseases[J]. Biochemistry and Structural Biology, 2015, 18: 147-154. |
45 | HOU Xuedan, LI Aolin, LIN Kaipeng, et al. Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment[J]. Bioresource Technology, 2018, 249: 261-267. |
46 | BRANDT A, GRASVIK J, HALLETT J P, et al. Deconstruction of lignocellulosic biomass with ionic liquids[J]. Green Chemistry, 2013, 15: 550-583. |
47 | WANG Hanjie, DE Vries Frits P, JIN Yongcan. A win-win technique of stabilizing sand dune and purifying paper mill black-liquor[J]. Journal of Environmental Sciences, 2009, 21: 488-493. |
48 | WAHLSTROM R, HILTUNEN J, SIRKKA M, et al. Comparison of three deep eutectic solvents and 1-ethyl-3-methylimidazolium acetate in the pretreatment of lignocellulose: effect on enzyme stability, lignocellulose digestibility and one-pot hydrolysis[J]. RSC Advances, 2016, 6: 68100-68110. |
49 | LYNAM J G, KUMAR N, WONG M J. Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density[J]. Bioresource Technology, 2017, 238: 684-689. |
50 | ZHAO Zheng, CHEN Xiaochun, ALI M F, et al. Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis[J]. Bioresource Technology, 2018, 263: 325-333. |
51 | FRANCISCO M, VANDEN B A, KROON M C. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing[J]. Green Chemistry, 2012, 14: 2153-2157. |
52 | MAMILLA J LK, NOVAK U, GRILC M, et al. Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic biomass and its cascade conversion to value-added bio-based chemicals[J]. Biomass & Bioenergy, 2019, 120: 417-425. |
53 | 李奥林. 深度共熔溶剂介导的水稻秸秆关键组分分离及相关机理研究[D]. 广州: 广东工业大学, 2019. |
LI Aolin. Fractionation of the key components of rice straw by using deep eutectic solvent and its related mechanism[D]. Guangzhou: Guangdong University of Technology, 2019. | |
54 | CARRIAZO D, SERRANO M C, GUTIERREZ M C,, et al. Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials[J]. Chemical Society Reviews, 2012, 41: 4996-5014. |
55 | ASSANOSI A A, FARAH M M, WOOD J, et al. A facile acidic choline chloride-p-TSA DES-catalysed dehydration of fructose to 5-hydroxymethylfurfural[J]. RSC Advances, 2014, 4: 39359-39364. |
56 | YIIN C L, QUITAIN A T, YUSUP S, et al. Characterization of natural low transition temperature mixtures (LTTMs): green solvents for biomass delignification[J]. Bioresource Technology, 2016, 199: 258-264. |
57 | FISCHER V, KUNZ W. Properties of sugar-based low-melting mixtures[J]. Molecular Physics, 2014, 112: 1241-1245. |
58 | ZDANOWICZ M, WILPISZEWSKA K, SPYCHAJ T. Deep eutectic solvents for polysaccharides processing. a review[J]. Carbohydrate Polymers, 2018, 200: 361-380. |
59 | DAI Yuntao, SPRONSEN J VAN, G-J WITKAMP, et al. Natural deep eutectic solvents as new potential media for green technology[J]. Analytica Chimica Acta, 2013, 766: 61-68. |
60 | KANDANELLI R, THULLURI C, MANGALA R, et al. A novel ternary combination of deep eutectic solvent-alcohol (DES-OL) system for synergistic and efficient delignification of biomass[J]. Bioresource Technology, 2018, 265: 573-576. |
61 | BOONSOMBUTI A, LUENGNARUEMITCHAI A, WONGKASEMJIT S. Enhancement of enzymatic hydrolysis of corncob by microwave-assisted alkali pretreatment and its effect in morphology[J]. Cellulose, 2013, 20: 1957-1966. |
62 | CHEN Zhu, WAN Caixia. Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment[J]. Bioresource Technology, 2018, 250: 532-537. |
63 | MALAEKE H, HOUSAINDOKHT M R, MONHEMI H, et al. Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification[J]. Journal of Molecular Liquids, 2018, 263: 193-199. |
64 | NINOMIYA K, OMOTE S, OGINO C, et al. Saccharification and ethanol fermentation from cholinium ionic liquid-pretreated bagasse with a different number of post-pretreatment washings[J]. Bioresource Technology, 2015, 189: 203-209. |
65 | GORKE J T, SRIENC F, KAZLAUSKAS R J. Hydrolase-catalyzed biotransformations in deep eutectic solvents[J]. Chemical Communications, 2008, 10: 1235-1237. |
66 | GUNNY A N N, ARBAIN D, NASHEF E M, et al. Applicability evaluation of deep eutectic solvents-cellulase system for lignocellulose hydrolysis[J]. Bioresource Technology, 2015, 181: 297-302. |
67 | AGRAWAL R, SATLEWAL A, SHARMA B, et al. Induction of cellulases by disaccharides or their derivatives in Penicillium janthinellum EMS-UV-8 mutant[J]. Biofuels, 2017, 8: 615-622. |
68 | HAYYAN M, HASHIM M A, HAYYAN A, et al. Are deep eutectic solvents benign or toxic?[J]. Chemosphere, 2013, 90: 2193-2195. |
69 | HAYYAN M, HASHIM MA, AL-SAADI M A, et al. Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents[J]. Chemosphere, 2013, 93: 455-459. |
70 | XU Pei, ZHENG Gaowei, ZONG Minhua, et al. Recent progress on deep eutectic solvents in biocatalysis[J]. Bioresources and Bioprocessing, 2017, 4: 34. |
71 | JEONG Kyungmin, Minsang LEE, Minwoo NAM, et al. Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media[J]. Journal of Chromatography, 2015, 1424: 10-17. |
72 | LOBO H R, SINGH B S, SHANKARLING G S. Deep eutectic solvents and glycerol: a simple, environmentally benign and efficient catalyst/reaction media for synthesis of N-aryl phthalimide derivatives[J]. Green Chemistry Letters and Reviews, 2012, 5: 487-533. |
73 | LI Changping, LI Dan, ZOU Shuangshuang, et al. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents[J]. Green Chemistry, 2013, 15: 2793-2799. |
[1] | MA Yi, CAO Shiwei, WANG Jiajun, LIN Liqun, XING Yan, CAO Tengliang, LU Feng, ZHAO Zhenlun, ZHANG Zhijun. Research progress in recovery of spent cathode materials for lithium-ion batteries using deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 219-232. |
[2] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[3] | YANG Xuzhao, LI Qing, YUAN Kangkang, ZHANG Yingying, HAN Jingli, WU Shide. Thermodynamic properties of Gemini ionic liquid based deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3123-3129. |
[4] | ZHANG Lele, QIAN Yundong, ZHU Huatong, FENG Silong, YANG Xiuna, YU Ying, YANG Qiang, LU Hao. Study on optimization limits of dehydration and desalination pretreatment of hydrogenated coal tar [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2298-2305. |
[5] | YE Yuxi, DING Xiaoxi, CHI Huarui, ZHU Kailun, LIU Yang, WANG Lingyun, GUO Qingjie. Hydrophobic deep eutectic solvent hydrogen bond interaction regulation and extraction performance of copper [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 397-406. |
[6] | HUANG Yuefeng, MA Lisha, ZHANG Lili, WANG Zhiguo. Research progress on functional application of lignocellulose composite biomass film materials [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4840-4854. |
[7] | HAN Mingyang, QIAO Hui, FU Jiaming, MA Zewen, WANG Yan, OUYANG Jia. Research progress of non-aqueous solvents on the pretreatment of lignocellulose [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4086-4097. |
[8] | CHENG Mingqiang, RU Juanjian, HUA Yixin, WANG Ding, GENG Xiao, ZHANG Wenwen, HUANG Haoming, WANG Daoxiang. Progress of deep eutectic solvents in recovery of cathode materials from spent lithium ion batteries [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3293-3305. |
[9] | RUAN Min, SUN Yutong, HUANG Zhongliang, LI Hui, ZHANG Xuan, WU Xikai, ZHAO Cheng, YAO Shirong, ZHANG Shuanbao, ZHANG Wei, HUANG Jing. Energy economy evaluation of sludge pretreatment-anaerobic digestion system [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1503-1516. |
[10] | XIE Xianli, LIU Yunyun, YU Qiang, ZHANG Yu, ZHANG Rongqing, QIU Yuxin. Improving enzymatic hydrolysis effect of herb residue by deep eutectic solvent pretreatment [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1349-1356. |
[11] | RUAN Jiawei, YE Xiangzhu, CHEN Lifang, QI Zhiwen. Recent progress in synthesis of organic carbonates from carbon dioxide catalyzed by ionic liquids and deep eutectic solvents [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1176-1186. |
[12] | WANG Na, SONG Xiulan, ZAN Botao. Synthesis of PHA by mixed microorganisms using simulative hydrolysate liquid from the excess sludge by APG combined with FNA pretreatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1017-1024. |
[13] | WANG Yilin, LI Shijie. Effect of hydrochloric acid pretreatment on the electrochemical properties of enteromorpha-based activated carbon [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6454-6460. |
[14] | LIU Qianjing, CHEN Xiaomiao, WANG Zhi, SHI Jiping, LI Baoguo, LIU Li. Deep eutectic solvent pretreatment of poplar hydrolysis residue for lignin separation [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5612-5618. |
[15] | ZHANG Qiang, CHEN Shiyang. Effect of oxygen-assisted hydrothermal pretreatment on fermentation of corn stover to ethanol [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 161-165. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |