Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (3): 1604-1610.DOI: 10.16085/j.issn.1000-6613.2020-0761
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
ZHANG Cunsheng1,2(), LIU Yan1, YANG Li1, TIAN Yufei3(
)
Received:
2020-05-07
Online:
2021-03-17
Published:
2021-03-05
Contact:
TIAN Yufei
通讯作者:
田玉菲
作者简介:
张存胜(1983—),男,博士,副教授,研究方向为食品废弃物资源化利用。E-mail:基金资助:
CLC Number:
ZHANG Cunsheng, LIU Yan, YANG Li, TIAN Yufei. Research progress of hexanol production through anaerobic fermentation of wasted industrial syngas[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1604-1610.
张存胜, 刘岩, 杨莉, 田玉菲. 工业废弃合成气厌氧发酵产己醇研究进展[J]. 化工进展, 2021, 40(3): 1604-1610.
阶段 | 菌株 | 发酵温度/℃ | 初始pH | 底物组成 | 主要产物及浓度/g·L-1 | 文献 |
---|---|---|---|---|---|---|
Ⅰ | C. ljungdahlii | 37 | 5.5 | CO∶H2∶CO2(12∶7∶1) | 乙酸18.0;乙醇20.7 | [ |
C. ragsdalei | 37 | 5.8 | CO∶H2∶N2∶CO2(38∶28.5∶28.5∶5) | 乙酸12.3;乙醇5.7 | [ | |
C. carboxidivorans | 25 | 6 | CO∶H2∶N2∶CO2 (8∶8∶7∶2) | 乙酸1.7;乙醇1.5 | [ | |
A. bacchi | 37 | 8 | CO∶H2∶CO2∶N2(4∶12∶3∶1) | 乙酸4.1;乙醇6.0 | [ | |
Ⅱ | C. kluyveri | 37 | 7.5 | 乙酸∶乙醇(1∶10) | 己酸8.4 | [ |
Ⅲ | C. ljungdahlii | 35 | 5.5 | CO∶H2∶CO2 (12∶7∶1);1.74 g/L己酸 | 己醇0.5 | [ |
A.bacchi | 37 | 7.5 | CO∶H2∶CO2(4∶3∶3);1.5g/L己酸 | 己醇1.0 | [ | |
Ⅰ~Ⅲ | C. carboxidivorans | 37 | — | CO∶H2∶CO2(7∶2∶1) | 己醇0.94 | [ |
阶段 | 菌株 | 发酵温度/℃ | 初始pH | 底物组成 | 主要产物及浓度/g·L-1 | 文献 |
---|---|---|---|---|---|---|
Ⅰ | C. ljungdahlii | 37 | 5.5 | CO∶H2∶CO2(12∶7∶1) | 乙酸18.0;乙醇20.7 | [ |
C. ragsdalei | 37 | 5.8 | CO∶H2∶N2∶CO2(38∶28.5∶28.5∶5) | 乙酸12.3;乙醇5.7 | [ | |
C. carboxidivorans | 25 | 6 | CO∶H2∶N2∶CO2 (8∶8∶7∶2) | 乙酸1.7;乙醇1.5 | [ | |
A. bacchi | 37 | 8 | CO∶H2∶CO2∶N2(4∶12∶3∶1) | 乙酸4.1;乙醇6.0 | [ | |
Ⅱ | C. kluyveri | 37 | 7.5 | 乙酸∶乙醇(1∶10) | 己酸8.4 | [ |
Ⅲ | C. ljungdahlii | 35 | 5.5 | CO∶H2∶CO2 (12∶7∶1);1.74 g/L己酸 | 己醇0.5 | [ |
A.bacchi | 37 | 7.5 | CO∶H2∶CO2(4∶3∶3);1.5g/L己酸 | 己醇1.0 | [ | |
Ⅰ~Ⅲ | C. carboxidivorans | 37 | — | CO∶H2∶CO2(7∶2∶1) | 己醇0.94 | [ |
1 | 刘瑾, 邬建国. 生物燃料的发展现状与前景[J]. 生态学报, 2008, 28(4): 1339-1353. |
LIU J, WU J G. Perspectives and prospects of biofuels[J]. Acta Ecologica Sinica, 2008, 28(4): 1339-1353. | |
2 | 关鹏搏. 脂肪醇制造与应用[M]. 北京: 中国轻工出版社, 1990: 14-17. |
GUAN P B. Manufacture and application of fatty alcohols[M]. Beijing: China Light Industry Press, 1990: 14-17. | |
3 | HEGDE S, LODGE J S, TRABOLD T A. Characteristics of food processing wastes and their use in sustainable alcohol production[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 510-523. |
4 | FERNÁNDEZ-NAVEIRA Á, VEIGA M C, KENNES C. H-B-E(hexanol-butanol-ethanol) fermentation for the production of higher alcohols from syngas/waste gas[J]. Journal of Applied Chemistry and Biotechnology, 2017, 92(4): 712-731. |
5 | RAGSDALE S W, PIERCE E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation[J]. Biochimica et Biophysica Acta, 2008, 1784(12): 1873-1898. |
6 | FERNÁNDEZ-NAVEIRA Á, ABUBACKAR H N, KENNES C. Production of chemicals from C1 gases (CO, CO2) by Clostridium carboxidivorans[J]. World Journal of Microbiology and Biotechnology, 2017, 33(3): 43. |
7 | TRACY B P, JONES S W, FAST A G, et al. Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications[J]. Current Opinion in Biotechnology, 2012, 23(3): 364-381. |
8 | RICHTER H, LOFTUS S E, ANGENENT L T. Integrating syngas fermentation with the carboxylate platform and yeast fermentation to reduce medium cost and improve biofuel productivity[J]. Environmental Technology, 2013, 34(13/14): 1983-1994. |
9 | ISOM C E, NANNY M A, TANNER R S. Improved conversion efficiencies forn-fatty acid reduction to primary alcohols by the solventogenic acetogen “Clostridium ragsdalei”[J]. Journal of Industrial Microbiology and Biotechnology, 2015, 42(1): 29-38. |
10 | RICHTER H, MARTIN M, ANGENENT L. A two-stage continuous fermentation system for conversion of syngas into ethanol[J]. Energies, 2013, 6(8): 3987-4000. |
11 | DEVARAPALLI M, ATIYEH H K, PHILLIPS J R, et al. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei[J]. Bioresource Technology, 2016, 209: 56-65. |
12 | RAMIÓ-PUJOL S, GANIGUÉ R, BAÑERAS L, et al. Incubation at 25℃ prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7[J]. Bioresource Technology, 2015, 192: 296-303. |
13 | LIU K, ATIYEH H K, STEVENSON B S, et al. Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol[J]. Bioresource Technology, 2014, 151: 69-77. |
14 | YIN Y, ZHANG Y, KARAKASHEV D B, et al. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources[J]. Bioresource Technology, 2017, 241: 638-644. |
15 | PEREZ J M, RICHTER H, LOFTUS S E, et al. Biocatalytic reduction of short-chain carboxylic acids into their corresponding alcohols with syngas fermentation[J]. Biotechnology and Bioengineering, 2013, 110(4): 1066-1077. |
16 | LIU K, ATIYEH H K, STEVENSON B S, et al. Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols[J]. Bioresource Technology, 2014, 152: 337-346. |
17 | PHILLIPSA J R, ATIYEHA H K, TANNER R S, et al. Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques[J]. Bioresource Technology, 2015, 190: 114-121. |
18 | DIENDER M, STAMS A J M, SOUSA D Z. Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas[J]. Biotechnology for Biofuels, 2016, 9(1): 82. |
19 | RICHTER H, MOLITOR B, DIENDER M, et al. A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction[J]. Frontiers in Microbiology, 2016, 7: 1773. |
20 | CIFERNO J P, MARANO J J. Benchmarking biomass gasification technologies for fuels, chemicals and hydrogen production[R]. Oregon: National Energy Technology Laboratory, 2002. |
21 | RAMACHANDRIYA K D, KUNDIYANA D K, WILKINS M R, et al. Carbon dioxide conversion to fuels and chemicals using a hybrid green process[J]. Applied Energy, 2013, 112: 289-299. |
22 | SKIDMORE B E. Syngas fermentation: quantification of assay techniques, reaction kinetics, and pressure dependencies of the Clostridial P11 hydrogenase[D]. Provo: Brigham Young University, 2010. |
23 | AHMED A, LEWIS R S. Fermentation of biomass-generated synthesis gas: effects of nitric oxide[J]. Biotechnology and Bioengineering, 2007, 97(5): 1080-1086. |
24 | KUMAR A, JONES D, HANNA M. Thermochemical biomass gasification: a review of the current status of the technology[J]. Energies, 2009, 2(3): 556-581. |
25 | XU D, LEWIS R S. Syngas fermentation to biofuels: effects of ammonia impurity in raw syngas on hydrogenase activity[J]. Biomass and Bioenergy, 2012, 45: 303-310. |
26 | ZHANG C S, YANG L, TSAPEKOS P, et al. Immobilization of Clostridium kluyveri on wheat straw to alleviate ammonia inhibition during chain elongation for n-caproate production[J]. Environment International, 2019, 127: 134-141. |
27 | PHILLIPS J, HUHNKE R, ATIYEH H. Syngas fermentation: a microbial conversion process of gaseous substrates to various products[J]. Fermentation, 2017, 3(2): 28. |
28 | SUN X, ATIYEH H K, HUHNKE R L, et al. Syngas fermentation process development for production of biofuels and chemicals: a review[J]. Bioresource Technology Reports, 2019, 7: 100279. |
29 | SHEN Y, BROWN R, WEN Z. Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: evaluating the mass transfer coefficient and ethanol production performance[J]. Biochemical Engineering Journal, 2014, 85: 21-29. |
30 | KIM Y K, LEE H. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation[J]. Bioresource Technology, 2016, 204: 139-144. |
31 | 张俊, 李苏巧, 彭林明, 等. 纳米流体强化气液传质研究进展[J]. 化工进展, 2013, 32(4): 732-739. |
ZHANG J, LI S Q, PENG L M, et al. Progress in research on gas-liquid mass transfer enhancement of nanofluids[J]. Chemical Industry and Engineering Progress, 2013, 32(4): 732-739. | |
32 | ABUBACKAR H N, VEIGA M C, KENNES C. Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol[J]. Biofuels Bioproducts and Biorefining, 2011, 5(1): 93-114. |
33 | S-C LIOU J, BALKWILL D, DRAKE G R, et al. Clostridium carboxidivorans sp. nov., a solvent-producing Clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(5): 2085-2091. |
34 | ABUBACKAR H N, BENGELSDORF F R, DÜRRE P, et al. Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia[J]. Applied Energy, 2016, 169: 210-217. |
35 | FERNÁNDEZ-NAVEIRA Á, ABUBACKAR H N, VEIGA M C, et al. Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans[J]. Applied Microbiology and Biotechnology, 2016, 100(7): 3361-3370. |
36 | ABUBACKAR H N, VEIGA M C, KENNES C. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid[J]. Bioresource Technology, 2015, 186: 122-127. |
37 | RAGSDALE S W. Enzymology of the Wood-Ljungdahl pathway of acetogenesis[J]. Annals of the New York Academy of Sciences, 2008, 1125(1): 129-136. |
38 | MITCHELL W J. Physiology of carbohydrate to solvent conversion by clostridia[J]. Advances in Microbial Physiology, 1998, 39: 31-130. |
39 | 贺娜, 邵效云. 煤制合成气生物发酵生产燃料乙醇技术进展[J]. 煤炭与化工, 2018, 41(6): 142-144. |
HE N, SHAO X Y. Advances in the production technology of fuel ethanol from coal to syngas by biofermentation[J]. Coal and Chemical Industry, 2018, 41(6): 142-144. | |
40 | BRUANT G, LÉVESQUE M J, PETER C, et al. Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7T[J]. Plos One, 2010, 5(9): 1-12. |
41 | SCHIEL-BENGELSDORF B, DÜRRE P. Pathway engineering and synthetic biology using acetogens[J]. FEBS Letters, 2012, 586(15): 2191-2198. |
42 | TRAWICK J D, BURK M J, BURGARD A P. Microorganisms and methods for conversion of syngas and other carbon sources to useful products: US201313920927[P]. 2013-06-18. |
[1] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[2] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[3] | LI Dongxian, WANG Jia, JIANG Jianchun. Producing biofuels from soapstock via pyrolysis and subsequent catalytic vapor-phase hydrotreating process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2874-2883. |
[4] | HUANG Yue, ZHAO Lixin, YAO Zonglu, YU Jiadong, LI Zaixing, SHEN Ruixia, AN Kemeng, HUANG Yali. Research progress in directed bioconversion of lactic acid and acetic acid from wood lignocellulosic wastes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2691-2701. |
[5] | RUAN Peng, YANG Runnong, LIN Zirong, SUN Yongming. Advances in catalysts for catalytic partial oxidation of methane to syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1832-1846. |
[6] | TIAN Yuan, LOU Shujie, MENG Shanru, YAN Jingru, XIAO Haicheng. Recent progress of Co-based catalysts for higher alcohols synthesis form syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1869-1876. |
[7] | CHEN Hao, ZHANG Chuanhao, YU Feng, FAN Binbin, LI Ruifeng. Catalytic performance of zeolite Y in oligomerization of isobutyl alcohol [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 794-802. |
[8] | LI Wanqi, YANG Fengjuan, JIA Dechen, JIANG Weihong, GU Yang. Biological utilization and conversion of syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 73-85. |
[9] | DENG Shaobi, BIAN Zhoufeng. Application of core-shell structure catalyst in dry reforming of methane [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 247-254. |
[10] | ZHANG Dazhou, LU Wenxin, SHANG Kuanxiang, HU Yuan, ZHU Fan, ZHANG Zongfei. Reaction network analysis of dimethyl oxalate hydrogenation to methyl glycolate and recent progress in the heterogeneous catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 204-214. |
[11] | XUE Machen, YANG Bolun, XIA Chungu, ZHU Gangli. Progress in heterogeneous catalyst for ethanol upgrading to higher (C6+) alcohols [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 194-203. |
[12] | SHI Xuan, YANG Dongyuan, HU Haobin, WANG Jiaofei, ZHANG Zhuangzhuang, HE Jianxun, DAI Chengyi, MA Xiaoxun. One-step preparation of toluene/xylene from benzene and syngas over ZnAlCrO x &HZSM-5 bifunctional catalyst [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 247-259. |
[13] | CAO Zhengkai, MI Xiaobin, WU Ziming, SUN Shike, CAO Junfeng, PENG Deqiang, LIANG Xiangcheng. Pressure drop analysis and application optimization of the unit for removing dust in coal syngas purification [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 15-21. |
[14] | HU Wende, WANG Yangdong, WANG Chuanming. Research progress on the direct catalytic conversion of syngas to light olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4754-4766. |
[15] | ZHANG Peng, MENG Fanhui, YANG Guinan, LI Zhong. Progress of metal oxide in OX-ZEO catalyst for CO x hydrogenation to light olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4159-4172. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 401
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 476
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |