1 |
刘瑾, 邬建国. 生物燃料的发展现状与前景[J]. 生态学报, 2008, 28(4): 1339-1353.
|
|
LIU J, WU J G. Perspectives and prospects of biofuels[J]. Acta Ecologica Sinica, 2008, 28(4): 1339-1353.
|
2 |
关鹏搏. 脂肪醇制造与应用[M]. 北京: 中国轻工出版社, 1990: 14-17.
|
|
GUAN P B. Manufacture and application of fatty alcohols[M]. Beijing: China Light Industry Press, 1990: 14-17.
|
3 |
HEGDE S, LODGE J S, TRABOLD T A. Characteristics of food processing wastes and their use in sustainable alcohol production[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 510-523.
|
4 |
FERNÁNDEZ-NAVEIRA Á, VEIGA M C, KENNES C. H-B-E(hexanol-butanol-ethanol) fermentation for the production of higher alcohols from syngas/waste gas[J]. Journal of Applied Chemistry and Biotechnology, 2017, 92(4): 712-731.
|
5 |
RAGSDALE S W, PIERCE E. Acetogenesis and the Wood-Ljungdahl pathway of CO2 fixation[J]. Biochimica et Biophysica Acta, 2008, 1784(12): 1873-1898.
|
6 |
FERNÁNDEZ-NAVEIRA Á, ABUBACKAR H N, KENNES C. Production of chemicals from C1 gases (CO, CO2) by Clostridium carboxidivorans[J]. World Journal of Microbiology and Biotechnology, 2017, 33(3): 43.
|
7 |
TRACY B P, JONES S W, FAST A G, et al. Clostridia: the importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications[J]. Current Opinion in Biotechnology, 2012, 23(3): 364-381.
|
8 |
RICHTER H, LOFTUS S E, ANGENENT L T. Integrating syngas fermentation with the carboxylate platform and yeast fermentation to reduce medium cost and improve biofuel productivity[J]. Environmental Technology, 2013, 34(13/14): 1983-1994.
|
9 |
ISOM C E, NANNY M A, TANNER R S. Improved conversion efficiencies forn-fatty acid reduction to primary alcohols by the solventogenic acetogen “Clostridium ragsdalei”[J]. Journal of Industrial Microbiology and Biotechnology, 2015, 42(1): 29-38.
|
10 |
RICHTER H, MARTIN M, ANGENENT L. A two-stage continuous fermentation system for conversion of syngas into ethanol[J]. Energies, 2013, 6(8): 3987-4000.
|
11 |
DEVARAPALLI M, ATIYEH H K, PHILLIPS J R, et al. Ethanol production during semi-continuous syngas fermentation in a trickle bed reactor using Clostridium ragsdalei[J]. Bioresource Technology, 2016, 209: 56-65.
|
12 |
RAMIÓ-PUJOL S, GANIGUÉ R, BAÑERAS L, et al. Incubation at 25℃ prevents acid crash and enhances alcohol production in Clostridium carboxidivorans P7[J]. Bioresource Technology, 2015, 192: 296-303.
|
13 |
LIU K, ATIYEH H K, STEVENSON B S, et al. Continuous syngas fermentation for the production of ethanol, n-propanol and n-butanol[J]. Bioresource Technology, 2014, 151: 69-77.
|
14 |
YIN Y, ZHANG Y, KARAKASHEV D B, et al. Biological caproate production by Clostridium kluyveri from ethanol and acetate as carbon sources[J]. Bioresource Technology, 2017, 241: 638-644.
|
15 |
PEREZ J M, RICHTER H, LOFTUS S E, et al. Biocatalytic reduction of short-chain carboxylic acids into their corresponding alcohols with syngas fermentation[J]. Biotechnology and Bioengineering, 2013, 110(4): 1066-1077.
|
16 |
LIU K, ATIYEH H K, STEVENSON B S, et al. Mixed culture syngas fermentation and conversion of carboxylic acids into alcohols[J]. Bioresource Technology, 2014, 152: 337-346.
|
17 |
PHILLIPSA J R, ATIYEHA H K, TANNER R S, et al. Butanol and hexanol production in Clostridium carboxidivorans syngas fermentation: medium development and culture techniques[J]. Bioresource Technology, 2015, 190: 114-121.
|
18 |
DIENDER M, STAMS A J M, SOUSA D Z. Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas[J]. Biotechnology for Biofuels, 2016, 9(1): 82.
|
19 |
RICHTER H, MOLITOR B, DIENDER M, et al. A narrow pH range supports butanol, hexanol, and octanol production from syngas in a continuous co-culture of Clostridium ljungdahlii and Clostridium kluyveri with in-line product extraction[J]. Frontiers in Microbiology, 2016, 7: 1773.
|
20 |
CIFERNO J P, MARANO J J. Benchmarking biomass gasification technologies for fuels, chemicals and hydrogen production[R]. Oregon: National Energy Technology Laboratory, 2002.
|
21 |
RAMACHANDRIYA K D, KUNDIYANA D K, WILKINS M R, et al. Carbon dioxide conversion to fuels and chemicals using a hybrid green process[J]. Applied Energy, 2013, 112: 289-299.
|
22 |
SKIDMORE B E. Syngas fermentation: quantification of assay techniques, reaction kinetics, and pressure dependencies of the Clostridial P11 hydrogenase[D]. Provo: Brigham Young University, 2010.
|
23 |
AHMED A, LEWIS R S. Fermentation of biomass-generated synthesis gas: effects of nitric oxide[J]. Biotechnology and Bioengineering, 2007, 97(5): 1080-1086.
|
24 |
KUMAR A, JONES D, HANNA M. Thermochemical biomass gasification: a review of the current status of the technology[J]. Energies, 2009, 2(3): 556-581.
|
25 |
XU D, LEWIS R S. Syngas fermentation to biofuels: effects of ammonia impurity in raw syngas on hydrogenase activity[J]. Biomass and Bioenergy, 2012, 45: 303-310.
|
26 |
ZHANG C S, YANG L, TSAPEKOS P, et al. Immobilization of Clostridium kluyveri on wheat straw to alleviate ammonia inhibition during chain elongation for n-caproate production[J]. Environment International, 2019, 127: 134-141.
|
27 |
PHILLIPS J, HUHNKE R, ATIYEH H. Syngas fermentation: a microbial conversion process of gaseous substrates to various products[J]. Fermentation, 2017, 3(2): 28.
|
28 |
SUN X, ATIYEH H K, HUHNKE R L, et al. Syngas fermentation process development for production of biofuels and chemicals: a review[J]. Bioresource Technology Reports, 2019, 7: 100279.
|
29 |
SHEN Y, BROWN R, WEN Z. Syngas fermentation of Clostridium carboxidivoran P7 in a hollow fiber membrane biofilm reactor: evaluating the mass transfer coefficient and ethanol production performance[J]. Biochemical Engineering Journal, 2014, 85: 21-29.
|
30 |
KIM Y K, LEE H. Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation[J]. Bioresource Technology, 2016, 204: 139-144.
|
31 |
张俊, 李苏巧, 彭林明, 等. 纳米流体强化气液传质研究进展[J]. 化工进展, 2013, 32(4): 732-739.
|
|
ZHANG J, LI S Q, PENG L M, et al. Progress in research on gas-liquid mass transfer enhancement of nanofluids[J]. Chemical Industry and Engineering Progress, 2013, 32(4): 732-739.
|
32 |
ABUBACKAR H N, VEIGA M C, KENNES C. Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol[J]. Biofuels Bioproducts and Biorefining, 2011, 5(1): 93-114.
|
33 |
S-C LIOU J, BALKWILL D, DRAKE G R, et al. Clostridium carboxidivorans sp. nov., a solvent-producing Clostridium isolated from an agricultural settling lagoon, and reclassification of the acetogen Clostridium scatologenes strain SL1 as Clostridium drakei sp. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(5): 2085-2091.
|
34 |
ABUBACKAR H N, BENGELSDORF F R, DÜRRE P, et al. Improved operating strategy for continuous fermentation of carbon monoxide to fuel-ethanol by clostridia[J]. Applied Energy, 2016, 169: 210-217.
|
35 |
FERNÁNDEZ-NAVEIRA Á, ABUBACKAR H N, VEIGA M C, et al. Efficient butanol-ethanol (B-E) production from carbon monoxide fermentation by Clostridium carboxidivorans[J]. Applied Microbiology and Biotechnology, 2016, 100(7): 3361-3370.
|
36 |
ABUBACKAR H N, VEIGA M C, KENNES C. Carbon monoxide fermentation to ethanol by Clostridium autoethanogenum in a bioreactor with no accumulation of acetic acid[J]. Bioresource Technology, 2015, 186: 122-127.
|
37 |
RAGSDALE S W. Enzymology of the Wood-Ljungdahl pathway of acetogenesis[J]. Annals of the New York Academy of Sciences, 2008, 1125(1): 129-136.
|
38 |
MITCHELL W J. Physiology of carbohydrate to solvent conversion by clostridia[J]. Advances in Microbial Physiology, 1998, 39: 31-130.
|
39 |
贺娜, 邵效云. 煤制合成气生物发酵生产燃料乙醇技术进展[J]. 煤炭与化工, 2018, 41(6): 142-144.
|
|
HE N, SHAO X Y. Advances in the production technology of fuel ethanol from coal to syngas by biofermentation[J]. Coal and Chemical Industry, 2018, 41(6): 142-144.
|
40 |
BRUANT G, LÉVESQUE M J, PETER C, et al. Genomic analysis of carbon monoxide utilization and butanol production by Clostridium carboxidivorans strain P7T[J]. Plos One, 2010, 5(9): 1-12.
|
41 |
SCHIEL-BENGELSDORF B, DÜRRE P. Pathway engineering and synthetic biology using acetogens[J]. FEBS Letters, 2012, 586(15): 2191-2198.
|
42 |
TRAWICK J D, BURK M J, BURGARD A P. Microorganisms and methods for conversion of syngas and other carbon sources to useful products: US201313920927[P]. 2013-06-18.
|