Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (3): 1252-1261.DOI: 10.16085/j.issn.1000-6613.2020-2137
• Special column:Green biomanufacturing • Previous Articles Next Articles
GUO Liang1,2(), GAO Cong1,2, ZHANG Li3, CHEN Xiulai1,2, LIU Liming1,2()
Received:
2020-10-26
Online:
2021-03-17
Published:
2021-03-05
Contact:
LIU Liming
郭亮1,2(), 高聪1,2, 张丽3, 陈修来1,2, 刘立明1,2()
通讯作者:
刘立明
作者简介:
郭亮(1989—),男,助理研究员,研究方向为合成生物学。E-mail:基金资助:
CLC Number:
GUO Liang, GAO Cong, ZHANG Li, CHEN Xiulai, LIU Liming. Advances in the suitability of artificial metabolic pathways[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1252-1261.
郭亮, 高聪, 张丽, 陈修来, 刘立明. 人工代谢路径适配性的研究进展[J]. 化工进展, 2021, 40(3): 1252-1261.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2137
1 | LEE S Y, KIM H U. Systems strategies for developing industrial microbial strains[J]. Nature Biotechnology, 2015, 33: 1061-1072. |
2 | CHOI K R, SHIN J H, CHO J S, et al. Systems metabolic engineering of Escherichia coli[J]. EcoSal Plus, 2016, 7(1): 1-56. |
3 | NIELSEN J, KEASLING J D. Engineering cellular metabolism[J]. Cell, 2016, 164(6): 1185-1197. |
4 | GUO L, DIAO W, GAO C, et al. Engineering Escherichia coli lifespan for enhancing chemical production[J]. Nature Catalysis, 2020, 3(3): 307-318. |
5 | LEE S Y, KIM H U, CHAE T U, et al. A comprehensive metabolic map for production of bio-based chemicals[J]. Nature Catalysis, 2019, 2(1): 18-33. |
6 | GUO L, PANG Z, GAO C, et al. Engineering microbial cell morphology and membrane homeostasis toward industrial applications[J]. Current Opinion in Biotechnology, 2020, 66: 18-26. |
7 | CHEN X, GAO C, GUO L, et al. DCEO biotechnology: tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals[J]. Chemical Reviews, 2017, 118(1): 4-72. |
8 | KO Y S, KIM J W, LEE J A, et al. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production[J]. Chemical Society Reviews, 2020, 48(14): 4615-4636. |
9 | HU G, LI Y, YE C, et al. Engineering microorganisms for enhanced CO2 sequestration[J]. Trends in Biotechnology, 2018(5): 532-547. |
10 | LO T M, TEO W S, LING H, et al. Microbial engineering strategies to improve cell viability for biochemical production[J]. Biotechnology Advances, 2013, 31(6): 903-914. |
11 | XU P, GU Q, WANG W, et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli[J]. Nature Communications, 2013, 4: 1-7. |
12 | WU G, YAN Q, JONES J A, et al. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications[J]. Trends in Biotechnology, 2016, 34(8): 652-664. |
13 | AVALOS J L, FINK G R, STEPHANOPOULOS G. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols[J]. Nature Biotechnology, 2013, 31(4): 335-341. |
14 | CHEN X, ZHU P, LIU L. Modular optimization of multi-gene pathways for fumarate production[J]. Metabolic Engineering, 2016, 33: 76-85. |
15 | AHN J H, SEO H, PARK W, et al. Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase[J]. Nature Communications, 2020, 11(1): 1-12. |
16 | BASSALO M C, LIU R, GILL R T. Directed evolution and synthetic biology applications to microbial systems[J]. Current Opinion in Biotechnology, 2016, 39: 126-133. |
17 | DELEBECQUE C J, LINDNER A B, SILVER P A, et al. Organization of intracellular reactions with rationally designed RNA assemblies[J]. Science, 2011, 333(6041): 470-474. |
18 | DUEBER J E, WU G C, MALMIRCHEGINI G R, et al. Synthetic protein scaffolds provide modular control over metabolic flux[J]. Nature Biotechnology, 2009, 27(8): 753-759. |
19 | WANG J, JAIN R, SHEN X L, et al. Rational engineering of diol dehydratase enables 1,4-butanediol biosynthesis from xylose[J]. Metabolic Engineering, 2017, 40: 148-156. |
20 | WANG F, LV X M, XEI W P, et al. Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2017, 39: 257-266. |
21 | MUKAI C, GAO L, NELSON J L, et al. Biomimicry promotes the efficiency of a 10-step sequential enzymatic reaction on nanoparticles, converting glucose to lactate[J]. Angewandte Chemie: International Edition, 2017, 56(1): 235-238. |
22 | LIAN J, HAMEDIRAD M, HU S, et al. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system[J]. Nature Communications, 2017, 8: 1-9. |
23 | WU S, ZHOU Y, WANG T, et al. Highly regio- and enantioselective multiple oxy- and amino-functionalizations of alkenes by modular cascade biocatalysis[J]. Nature Communications, 2016, 7: 1-13. |
24 | AJIKUMAR P K, XIAO W H, TYO K E J, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330(6000): 70-74. |
25 | WU J, ZHOU T, DU G, et al. Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli[J]. PLoS One, 2014, 9(7): e101492. |
26 | LIU Z, ZHANG Y, JIA X, et al. In vitro reconstitution and optimization of the entire pathway to convert glucose into fatty acid[J]. ACS Synthetic Biology, 2017, 6(4): 701-709. |
27 | OPGENORTH P H, KORMAN T P, BOWIE J U. A synthetic biochemistry module for production of bio-based chemicals from glucose[J]. Nature Chemical Biology, 2016, 12(6): 393-395. |
28 | GAO C, WANG S, HU G, et al. Engineering Escherichia coli for malate production by integrating modular pathway characterization with CRISPRi-guided multiplexed metabolic tuning[J]. Biotechnology and Bioengineering, 2018, 115(3): 661-672. |
29 | AGAPAKIS C M, BOYLE P M, SILVER P A. Natural strategies for the spatial optimization of metabolism in synthetic biology[J]. Nature Chemical Biology, 2012, 8(6): 527-535. |
30 | GAO C, XU P, YE C, et al. Genetic circuit-assisted smart microbial engineering[J]. Trends in Microbiology, 2019, 27(12): 1011-1124. |
31 | CHEN X, LIU L. Gene circuits for dynamically regulating metabolism[J]. Trends in Biotechnology, 2018, 36(8): 751-754. |
32 | WANG M, CHEN B, FANG Y, et al. Cofactor engineering for more efficient production of chemicals and biofuels[J]. Biotechnology Advances, 2017, 35(8): 1032-1039. |
33 | MCCARTY N S, LEDESMA-AMARO R. Synthetic biology tools to engineer microbial communities for biotechnology[J]. Trends in Biotechnology, 2019, 37(2):181-197. |
34 | BAILEY J E, SBURLATI A, HATZIMANIKATIS V, et al. Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes[J]. Biotechnology and Bioengineering, 2002, 79(5): 568-579. |
35 | YE C, XU N, GAO C, et al. Comprehensive understanding of Saccharomyces cerevisiae phenotypes with whole-cell model WM_S288C[J]. Biotechnology and Bioengineering, 2020, 117(5): 1562-1574. |
36 | WANG S, HOU Y, CHEN X, et al. Kick-starting evolution efficiency with an autonomous evolution mutation system[J]. Metabolic Engineering, 2019, 54: 127-136. |
37 | LEE H, DELOACHE W C, DUEBER J E. Spatial organization of enzymes for metabolic engineering[J]. Metabolic Engineering, 2012, 14(3): 242-251. |
38 | DELOACHE W C, RUSS Z N, DUEBER J E. Towards repurposing the yeast peroxisome for compartmentalizing heterologous metabolic pathways[J]. Nature Communications, 2016, 7: 1-11. |
39 | ZHOU Y J, BUIJS N A, ZHU Z, et al. Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition[J]. Journal of America Chemistry Society, 2016, 138(47): 15368-15377. |
40 | KUMAR S, HAHN F M, BAIDOO E, et al. Remodeling the isoprenoid pathway in tobacco by expressing the cytoplasmic mevalonate pathway in chloroplasts[J]. Metabolic Engineering, 2012, 14(1): 19-28. |
41 | BAYER T S, WIDMAIER D M, TEMME K, et al. Synthesis of methyl halides from biomass using engineered microbes[J]. Journal of the American Chemical Society, 2009, 131(18): 6508-6515. |
42 | MURAKAMI S, SHIMAMOTO T, NAGANO H, et al. Producing human ceramide-NS by metabolic engineering using yeast Saccharomyces cerevisiae[J]. Scientific Reports, 2015, 5: 1-11. |
43 | LV X, WANG F, ZHOU P, et al. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae[J]. Nature Communications2016, 7: 1-12. |
44 | MADIGAN M. Brock biology of microorganisms[M]. 13th ed. Upper Saddle River: Prientice Hall, Inc., 2012. |
45 | CHOI S Y, SI J P, KIM W J, et al. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli[J]. Nature Biotechnology, 2016, 34(4): 435-440. |
46 | SHIN H D, YOON S H, WU J, et al. High-yield production of meso-2,3-butanediol from cellodextrin by engineered E. coli biocatalysts[J]. Bioresource Technology, 2012, 118: 367-373. |
47 | JESCHEK M, REUTER R, HEINISCH T, et al. Directed evolution of artificial metalloenzymes for in vivo metathesis[J]. Nature, 2016, 537(7622): 661-665. |
48 | LEE K B, NAM D H, NUHN J A M, et al. Direct expression of active human tissue inhibitors of metalloproteinases by periplasmic secretion in Escherichia coli[J]. Microbial Cell Factories, 2017, 16(1): 1-12. |
49 | YANG Y, WU Y, HU Y, et al. Harnessing the periplasm of bacteria to develop biocatalyst for biosynthesis of highly pure chemicals[J]. Applied and Environmental Microbiology. 2017, 84(1): e01693-e01617. |
50 | GUO L, ZHANG F, ZHANG C, et al. Enhancement of malate production through engineering of the periplasmic rTCA pathway in Escherichia coli[J]. Biotechnology and Bioengineering, 2018, 115(6): 1571-1580. |
51 | TAN Z, YOON J M, NIELSEN D R, et al. Membrane engineering via trans unsaturated fatty acids production improves Escherichia coli robustness and production of biorenewables[J]. Metabolic Engineering, 2016, 35: 105-113. |
52 | XU P. Production of chemicals using dynamic control of metabolic fluxes[J]. Current Opinion in Biotechnology, 2018, 53: 12-19. |
53 | SHEN X, WANG J, LI C, et al. Dynamic gene expression engineering as a tool in pathway engineering[J]. Current Opinion in Biotechnology, 2019, 59: 122-129. |
54 | ZHAO E M, ZHANG Y, MEHL J, et al. Optogenetic regulation of engineered cellular metabolism for microbial chemical production[J]. Nature, 2018, 555: 682-687. |
55 | GUPTA A, REIZMAN I M, REISCH C R, et al. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit[J]. Nature Biotechnology, 2017, 35(3): 273-279. |
56 | DOONG S J, GUPTA A, PRATHER K L J. Layered dynamic regulation for improving metabolic pathway productivity in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 2964-2969. |
57 | GAO C, HOU J, XU P, et al. Programmable biomolecular switches for rewiring flux in Escherichia coli[J]. Nature Communications, 2019, 10(1): 1-12. |
58 | CHEN X, LI S, LIU L. Engineering redox balance through cofactor systerms[J]. Trends in Biotechnology, 2014, 32(6): 337-343. |
59 | CHEN X, LI Y, TONG T, et al. Spatial modulation and cofactor engineering of key pathway enzymes for fumarate production in Candida glabrata[J]. Biotechnology and Bioengineering, 2019, 116(3): 622-630. |
60 | LIM J H, SEO S W, KIM S Y, et al. Refactoring redox cofactor regeneration for high-yield biocatalysis of glucose to butyric acid in Escherichia coli[J]. Bioresource Technology, 2013, 135: 568-573. |
61 | QIAO K, WASYLENKO T M, ZHOU K, et al. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism[J]. Nature Biotechnology, 2017, 35(2): 173-177. |
62 | GUO J, SUASTEGUI M, SAKIMOTO K K, et al. Light-driven fine chemical production in yeast biohybrids[J]. Science, 2018, 362(6416): 813-816. |
63 | CHEN X, XU G, XU N, et al. Metabolic engineering of Torulopsis glabrata for malate production[J]. Metabolic Engineering, 2013, 19: 10-16. |
64 | YE C, LUO Q, GUO L, et al. Improving lysine production through construction of an Escherichia coli enzyme-constrained model[J]. Biotechnology and Bioengineering, 2020, 117(11): 3533-3544. |
65 | KIM H M, CHAE T U, CHOI S Y, et al. Engineering of an oleaginous bacterium for the production of fatty acids and fuels[J]. Nature Chemical Biology, 2019, 15(7): 721-729. |
66 | ZHOU K, QIAO K J, EDGAR S, et al. Distributing a metabolic pathway among a microbial consortium enhances production of natural products[J]. Nature Biotechnology, 2015, 33(4): 377-783. |
67 | KONG W, MELDGIN D R, COLLINS J J, et al. Designing microbial consortia with defined social interactions[J]. Nature Chemical Biology, 2018, 14(8): 821-829. |
68 | KIM S, LINDNER S N, ASLAN S, et al. Growth of E. coli on formate and methanol via the reductive glycine pathway[J]. Nature Chemical Biology, 2020, 16: 538-545. |
69 | CHOE D, LEE J H, YOO M, et al. Adaptive laboratory evolution of a genome-reduced Escherichia coli[J]. Nature Communications, 2019, 10(1): 1-14. |
70 | WANG W, LI S, LI Z, et al. Harnessing the intracellular triacylglycerols for titer improvement of polyketides in Streptomyces[J]. Nature Biotechnology, 2020, 38(1): 76-83. |
71 | ZHU Z, HU Y, TEIXEIRA P G, et al. Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids[J]. Nature Catalysis, 2020, 3(1): 64-74. |
[1] | GAO Cong, CHEN Chenghu, CHEN Xiulai, LIU Liming. Progress and challenges of engineering microorganisms to produce biobased monomers [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4123-4135. |
[2] | GUO Feng, ZHANG Shangjie, JIANG Yujia, JIANG Wankui, XIN Fengxue, ZHANG Wenming, JIANG Min. Biotransformation of one-carbon resources by yeast [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 30-39. |
[3] | TAO Yuxuan, ZHANG Shangjie, JING Yiwen, XIN Fengxue, DONG Weiliang, ZHOU Jie, JIANG Yujia, ZHANG Wenming, JIANG Min. Recent advances in the construction strategy of methylotrophic Escherichia coli [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3932-3941. |
[4] | WANG Ying, QU Junze, LIANG Nan, HAO He, YUAN Yingjin. Rapid construction and directed evolution of cell factories for carotenoid biosynthesis [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1187-1201. |
[5] | LIU Weibing, YE Bangce. Progress of synthetic biology research and biological manufacturing of actinomycetes polyketides [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1226-1237. |
[6] | MA Yueyuan, CHEN Jinchun, CHEN Guoqiang. Halophilic microorganisms as microbial chassis: applications and prospects [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1178-1186. |
[7] | SUN Wentao, LI Chun. Design and construction of microbial cell factory for biosynthesis of plant natural products [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1202-1214. |
[8] | GAO Cong, GUO Liang, HU Guipeng, CHEN Xiulai, LIU Liming. Advances of metabolic flux regulation in microbial cell factories [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6807-6817. |
[9] | SHANG Juan, LU Yanghui, ZHENG Jinyang, SUN Chen, HUA Zhengli, YU Wentao, ZHANG Yiwei. Research status-in-situ and key challenges in pipeline transportation of hydrogen-natural gas mixtures [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5499-5505. |
[10] | Chen WANG, Meng ZHAO, Mingzhu DING, Ying WANG, Mingdong YAO, Wenhai XIAO. Application of biological scaffold system on synthetic biology [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4557-4567. |
[11] | Pengcheng CHANG, Yang YU, Ying WANG, Chun LI. Combinatorial regulation strategies for efficient synthesis of terpenoids in Saccharomyces cerevisiae [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 598-605. |
[12] | YANG Kun, WANG Ying, LI Chun. Cell transporter protein and engineered applications [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1410-1417. |
[13] | LIU Dingyu, MENG Jiao, WANG Zhiwen, CHEN Tao, ZHAO Xueming. Progress and application on multivariate modular metabolic engineering in metabolic engineering [J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3619-3626. |
[14] | XIAO Wenhai, ZHOU Sijie, WANG Ying, YUAN Yingjin. How to make biology more “engineering” [J]. Chemical Industry and Engineering Progree, 2016, 35(06): 1827-1836. |
[15] | WAN Tao1,QI Haishan1,CHEN Yunlin2,WEN Jianping1. Research progress of biosynthesis of daptomycin and its derivative [J]. Chemical Industry and Engineering Progree, 2012, 31(07): 1581-1586. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |