1 |
ALPER H, MOXLEY J, NEVOIGT E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production[J]. Science, 2006, 314(5805): 1565-1568.
|
2 |
ALPER H, STEPHANOPOULOS G. Global transcription machinery engineering: a new approach for improving cellular phenotype[J]. Metab. Eng., 2007, 9(3): 258-267.
|
3 |
LIU H, YAN M, LAI C, et al. gTME for improved xylose fermentation of Saccharomyces cerevisiae[J]. Appl. Biochem. Biotechnol., 2010, 160(2): 574-582.
|
4 |
ALPER H, MIYAOKU K, STEPHANOPOULOS G. Construction of lycopene-overproducing E. coli strain by combining systemic and combinatorial gene knockout target[J]. Nat. Biotechnol., 2005, 23(5): 612-616.
|
5 |
ALPER H, JIN Y S, STEPHANOPOULOS G, et al. Identifying gene targets for the metabolic of lycopene biosynthesis in Escherichia coli[J]. Metab. Eng., 2005, 7(3): 155-164.
|
6 |
PARK K S, JANG Y S, KIM J S, et al. Phenotypic alteration and target gene identification using combinatorial libraries of zinc finger proteins in prokaryotic cells[J]. J. Bacteriol., 2005, 187(15): 5496-5499.
|
7 |
PARK K S, LEE D K, KIM J S, et al. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors[J]. Nat. Biotechnol., 2003, 21(10): 1208-1214.
|
8 |
PARK K S, SEOL W, KIM J S, et al. Identification and use of zinc finger transcription factors that increase production of recombinant proteins in yeast and mammalian cells[J]. Biotechnol. Prog., 2005, 21(3): 664-670.
|
9 |
MARTÍNEZ-ANTONIO A, COLLADO-VIDES J. Identifying global regulators in transcriptional regulatory networks in bacteria[J]. Curr. Opin. Microbiol., 2003, 6(5): 482-489.
|
10 |
LEE T I, RINALDI N J, ROBERT F, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae[J]. Science, 2002, 298(5594): 799-804.
|
11 |
LAM F H, HARTNER F S, FINK G R, et al. Enhancing stress resistance and production phenotypes through transcriptome engineering[J]. Methods Enzymol., 2010, 470: 509-532.
|
12 |
LIU H, LIU K, YAN M, et al. gTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate[J]. Appl. Biochem. Biotechnol., 2011, 164(7): 1150-1159.
|
13 |
TAN F, WU B, DAI L, et al. Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis[J]. Microb. Cell Fact., 2016, 15(1): 4-12.
|
14 |
CHEN T, WANG J, YANG R, et al. Laboratory-evolved mutants of an exogenous global regulator, IrrE from Deinococcus radiodurans, enhance stress tolerances of Escherichia coli[J]. PLoS One, 2011, 6(1): e16228.
|
15 |
WANG H, YANG L, WU K, et al. Rational selection and engineering of exogenous principal sigma factor (σHrdB) to increase teicoplanin production in an industrial strain of Actinoplanes teichomyceticus[J]. Microb. Cell Fact., 2014, 13: 10.
|
16 |
YU H M, TYO K, ALPER H, et al. A high throughput screen for hyaluronic acid accumulation in recombinant Escherichia coli transformed by libraries of engineered sigma factors[J]. Biotechnol. Bioeng., 2008, 101(4): 788-796.
|
17 |
DU X, TAKAGI H. N-acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species[J]. Appl. Microbiol. Biotechnol., 2007, 75(6): 1343-1351.
|
18 |
CAO T S, CHI Z, LIU G L, et al. Expression of TPS1 gene from Saccharomycopsis fibuligera A11 in Saccharomyces sp. W0 enhances trehalose accumulation, ethanol tolerance, and ethanol production[J]. Mol. Biotechnol., 2014, 56(1): 72-78.
|
19 |
JUNG YJ, PARK HD. Antisense-mediated inhibition of acid trehalase (ATH1) gene expression promotes ethanol fermentation and tolerance in Saccharomyces cerevisiae[J]. Biotechnol. Lett., 2005, 27: 1855-1859.
|
20 |
QIU Z, JIANG R. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase Ⅱ subunit Rpb7[J]. Biotechnol. Biofuels, 2017, 10: 125.
|
21 |
KLEIN-MARCUSCHAMER D, STEPHANOPOULOS G. Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains[J].Proc. Natl. Acad. Sci. USA, 2008, 105(7): 2319-2324.
|
22 |
GAO X, JIANG L, ZHU L, et a1. Tailoring of global transcription sigma D factor by random mutagenesis to improve Escherichia coli tolerance towards low-pHs[J]. J. Biotechnol., 2016, 224: 55-63.
|
23 |
MATSUI K, TERANISHI S, KAMON S, et a1. Discovery of a modified transcription factor endowing yeasts with organic-solvent tolerance and reconstruction of an organic-solvent-tolerant Saccharomyces cerevisiae strain[J].Appl. Environ. Microbiol., 2008, 74(13): 4222-4225.
|
24 |
BASAK S, SONG H, JIANG R, et al. Error-prone PCR of global transcription factor cyclic AMP receptor protein for enhanced organic solvent (toluene) tolerance[J]. Process Biochem., 2012, 47(12): 2152-2158.
|
25 |
ZHOU Z, LIU Y, ZANAROLI G, et al. Enhancing bioremediation potential of Pseudomonas putida by developing its acid stress tolerance with glutamate decarboxylase dependent system and global regulator of extreme radiation resistance[J]. Front. Microbiol., 2019, 10: 2033.
|
26 |
LI J W, ZHANG X Y, WU H, et al. Transcription factor engineering for high-throughput strain evolution and organic acid bioproduction: a review[J]. Front. Bioeng. Biotechnol., 2020, 8: 98.
|