Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 890-900.DOI: 10.16085/j.issn.1000-6613.2020-0584
• Industrial catalysis • Previous Articles Next Articles
Peihua WANG1(), Zhifeng QIN1,2,3(), Qiongxiao WU4, Congming LI1, Maoqian MIAO1, Liping CHANG1, Pengcheng SUN2, Jian ZENG2, Lihua WANG2, Kechang XIE1
Received:
2020-04-14
Revised:
2020-06-15
Online:
2021-02-09
Published:
2021-02-05
Contact:
Zhifeng QIN
汪佩华1(), 秦志峰1,2,3(), 吴琼笑4, 李聪明1, 苗茂谦1, 常丽萍1, 孙鹏程2, 曾剑2, 王立华2, 谢克昌1
通讯作者:
秦志峰
作者简介:
汪佩华(1995—),男,硕士研究生,研究方向为工业催化。E-mail:基金资助:
CLC Number:
Peihua WANG, Zhifeng QIN, Qiongxiao WU, Congming LI, Maoqian MIAO, Liping CHANG, Pengcheng SUN, Jian ZENG, Lihua WANG, Kechang XIE. Effect of phosphorus adding manners on the performance of NiMo/Al2O3 catalyst in hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 890-900.
汪佩华, 秦志峰, 吴琼笑, 李聪明, 苗茂谦, 常丽萍, 孙鹏程, 曾剑, 王立华, 谢克昌. 磷添加方式对NiMo/Al2O3催化剂加氢脱硫性能的影响[J]. 化工进展, 2021, 40(2): 890-900.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0584
气体组分 | 体积分数/% | 气体组分 | 体积分数/% |
---|---|---|---|
H2 | 57.46 | N2 | 3.95 |
CO | 6.90 | O2 | 0.48 |
CO2 | 2.99 | CnHm | 2.42 |
CH4 | 25.80 | C4H4S | 438.75mg/m3 |
气体组分 | 体积分数/% | 气体组分 | 体积分数/% |
---|---|---|---|
H2 | 57.46 | N2 | 3.95 |
CO | 6.90 | O2 | 0.48 |
CO2 | 2.99 | CnHm | 2.42 |
CH4 | 25.80 | C4H4S | 438.75mg/m3 |
样品 | 各组分质量分数/% | 比表面积 /m2·g-1 | 孔体积 /cm3·g-1 | 孔径 /nm | ||
---|---|---|---|---|---|---|
MoO3 | NiO | P | ||||
γ-Al2O3 | — | — | — | 212 | 0.39 | 7.91 |
P/Al | 0 | 0 | 1 | 181 | 0.36 | 7.58 |
PNi/Al | 0 | 5 | 1 | 181 | 0.34 | 7.58 |
PMo/Al | 15 | 0 | 1 | 185 | 0.34 | 7.93 |
P-NiMo/Al | 15 | 5 | 1 | 139 | 0.36 | 8.06 |
PNi-Mo/Al | 15 | 5 | 1 | 126 | 0.31 | 8.97 |
PMo-Ni/Al | 15 | 5 | 1 | 144 | 0.29 | 8.07 |
NiMo-P/Al | 15 | 5 | 1 | 161 | 0.30 | 7.84 |
NiMoP/Al | 15 | 5 | 1 | 179 | 0.31 | 7.36 |
样品 | 各组分质量分数/% | 比表面积 /m2·g-1 | 孔体积 /cm3·g-1 | 孔径 /nm | ||
---|---|---|---|---|---|---|
MoO3 | NiO | P | ||||
γ-Al2O3 | — | — | — | 212 | 0.39 | 7.91 |
P/Al | 0 | 0 | 1 | 181 | 0.36 | 7.58 |
PNi/Al | 0 | 5 | 1 | 181 | 0.34 | 7.58 |
PMo/Al | 15 | 0 | 1 | 185 | 0.34 | 7.93 |
P-NiMo/Al | 15 | 5 | 1 | 139 | 0.36 | 8.06 |
PNi-Mo/Al | 15 | 5 | 1 | 126 | 0.31 | 8.97 |
PMo-Ni/Al | 15 | 5 | 1 | 144 | 0.29 | 8.07 |
NiMo-P/Al | 15 | 5 | 1 | 161 | 0.30 | 7.84 |
NiMoP/Al | 15 | 5 | 1 | 179 | 0.31 | 7.36 |
样品 | 表面Mo组成/% | 原子比 | |||
---|---|---|---|---|---|
n(Mo4+)/n(Mo) | n(Mo6+)/n(Mo) | n(Mo5+)/n(Mo) | Ni/(Ni+Mo) | S/Mo | |
NiMo/Al | 21 | 58 | 21 | 0.14 | 0.27 |
P-NiMo/Al | 26 | 51 | 23 | 0.14 | 0.35 |
PNi-Mo/Al | 58 | 35 | 7 | 0.17 | 1.37 |
PMo-Ni/Al | 43 | 25 | 32 | 0.19 | 1.16 |
NiMoP/Al | 32 | 43 | 25 | 0.16 | 0.39 |
NiMo-P/Al | 35 | 48 | 17 | 0.16 | 1.13 |
样品 | 表面Mo组成/% | 原子比 | |||
---|---|---|---|---|---|
n(Mo4+)/n(Mo) | n(Mo6+)/n(Mo) | n(Mo5+)/n(Mo) | Ni/(Ni+Mo) | S/Mo | |
NiMo/Al | 21 | 58 | 21 | 0.14 | 0.27 |
P-NiMo/Al | 26 | 51 | 23 | 0.14 | 0.35 |
PNi-Mo/Al | 58 | 35 | 7 | 0.17 | 1.37 |
PMo-Ni/Al | 43 | 25 | 32 | 0.19 | 1.16 |
NiMoP/Al | 32 | 43 | 25 | 0.16 | 0.39 |
NiMo-P/Al | 35 | 48 | 17 | 0.16 | 1.13 |
1 | 李慧敏. 焦炉煤气制天然气的重要意义[J]. 山西化工, 2019, 39(1):103-104. |
LI Huimin. The important significance of coke oven for natural gas production[J]. Shanxi Chemical Industry, 2019, 39(1): 103-104. | |
2 | 李旭. 我国焦炉煤气制天然气技术的进展[J]. 广州化工, 2016, 44(9): 30-31, 64. |
LI Xu. Technology progress of coke oven gas making natural gas in China[J]. Guangzhou Chemical Industry, 2016 44(9):30-31, 64. | |
3 | 杜雄伟. 焦炉煤气制天然气工艺技术探讨[J]. 天然气化工(C1化学与化工), 2014, 39(4): 74-76, 91. |
DU Xiongwei. A discussion processes for conversion of coke oven gas to natural gas[J]. Natural Gas Chemical Industry (C1 Chemistry and Chemical Industry), 2014, 39(4): 74-76, 91. | |
4 | 张继龙, 李晴, 帖呈, 等. 焦炉煤气利用的分析与建议[J]. 煤化工, 2013, 41(3): 4-8. |
ZHANG Jilong, LI Qing, Cheng TIE, et al. Status and development trends of COG utilization[J]. Coal Chemical Industry, 2013, 41(3): 4-8. | |
5 | 吴越峰, 吴双月. 利用焦炉气生产合成氨工艺路线探讨[C]//全国炼焦行业利用焦炉煤气生产甲醇暨应用研讨会, 北京, 2006: 135-142. |
WU Yuefeng, WU Shuangyue. Discussion on the process route of producing synthetic ammonia with coke oven gas[C]//National Coking Industry Uses Coke Oven Gas to Produce Methanol and Application Seminar, Beijing, 2006: 135-142. | |
6 | LIU Xin, YUAN Zengwei. Life cycle environmental performance of by-product coke production in China[J]. Journal of Cleaner Production, 2015, 112(2): 1292-1301. |
7 | 张华西, 安楚玉, 张礼树, 等. 焦炉煤气加氢脱硫催化剂的制备及应用[J]. 天然气化工(C1化学与化工), 2019, 44(2): 46-49. |
ZHANG Huaxi,AN Chuyu, ZHANG Lishu. Preparation and application of catalyst for hydrodesulfurization of coke oven gas[J]. Natural Gas Chemistry (C1 Chemistry and Chemical Engineering), 2019, 44(2): 46-49. | |
8 | 李安学. 现代煤制天然气工厂概念设计研究[M]. 北京: 化学工业出版社, 2015: 154. |
LI Anxue. Research on conceptual design of modern coal-to-gas plant [M]. Beijing: Chemical Industry Press, 2015: 154. | |
9 | 刘志凯. 焦炉煤气加氢脱硫FeMo催化剂的研究[D]. 武汉: 武汉理工大学, 2010. |
LIU Zhikai. Study on FeMo hydrodesulfurization catalyst for the coke oven gas[D]. Wuhan: Wuhan University of Technology, 2010. | |
10 | 徐贺明, 屈一新, 闪俊杰, 等. 焦炉煤气精脱硫系统的研究与优化[J]. 天然气化工(C1化学与化工), 2015, 40(4): 64-68. |
XU Heming, QU Yixin, SHAN Junjie, et al. Research and optimization of desulfurization system for coke oven gas[J]. Natural Gas Chemical Industry (C1 Chemistry and Chemical Industry), 2015, 40(4): 64-68. | |
11 | 王艾荣, 虎骁, 史军伟, 等. 焦炉煤气催化加氢转化精脱硫工艺及生产实践[J]. 煤化工, 2016, 44(6): 42-44. |
WANG Airong, HU Xiao, SHI Junwei, et al. Catalytic hydrogenation conversion fine desulfurization process of coke oven gas and its production practice[J]. Coal Chemical Industry, 2016, 44(6): 42-44. | |
12 | 宋毛宁. 煤焦油加氢脱芳催化剂及其工艺研究[D]. 太原: 太原理工大学, 2017. |
SONG Maoning. Studies on catalyst and technique for hydrodearomatization of coal tar[D]. Taiyuan: Taiyuan University of Technology, 2017. | |
13 | XIANG Chune, CHAI Yongming, FAN Jing. Effect of phosphorus on the hydrodesulfurization and hydrodenitrogenation performance of presulfided NiMo/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2011, 39(5): 355-360. |
14 | LI Dong, NIU Menglong, YANG Zhanbiao, et al. Effect of phosphorus modification on the coal tar hydrogenation activity of the Ni-Mo/ γ-Al2O3 catalyst[J]. Reaction Kinetics, Mechanisms and Catalysis, 2018, 125(1): 271-286. |
15 | 胡大为, 杨清河, 孙淑玲, 等. 磷对MoCoNi/Al2O3催化剂性能及活性结构的影响[J]. 石油炼制与化工, 2011, 42(5): 1-4. |
HU Dawei, YANG Qinghe, SUN Shuling, et al. Effect of phosphorus on the performance and active structure of MoCoNi/Al2O3 catalyst[J]. Petroleum Processing and Petrochemicals, 2011, 42(5): 1-4. | |
16 | ALI S A, AHMED S, AHMED K W, et al. Simultaneous hydrodesulfurization of dibenzothiophene and substituted dibenzothiophenes over phosphorus modified CoMo/Al2O3 catalysts[J]. Fuel Processing Technology, 2012, 98: 39-44. |
17 | YANG Lei, PENG Chong, FANG Xiangchen, et al. Hierarchically macro-mesoporous Ni-Mo/Al2O3 catalysts for hydrodesulfurization of dibenzothiophene[J]. Catalysis Communications, 2019, 121: 68-72. |
18 | 林凌, 伊晓东, 邱波, 等. 免预硫化的加氢脱硫MoNiP/Al2O3催化剂的制备和表征[J]. 催化学报, 2007,28(12): 1096-1100. |
LIN Ling, YI Xiaodong, QIU Bo, et al. Preparation and characterization of presulfidation MoNiP/Al2O3 catalyst for thiophene hydrodesulfurization[J]. Chinese Journal of Catalysis, 2007, 28(12): 1096-1100. | |
19 | GUEVARA-LARA A, BACAUD Robert, VRINAT M. Highly active NiMo/TiO2-Al2O3 catalysts: influence of the preparation and the activation conditions on the catalytic activity[J]. Applied Catalysis A: General, 2007, 328(2): 99-108. |
20 | DING Lianhui, ZHANG Zisheng, ZHENG Ying, et al. Effect of fluorine and boron modification on the HDS, HDN and HDA activity of hydrotreating catalysts[J]. Applied Catalysis A: General, 2006, 301(2): 241-250. |
21 | 胡乃方, 崔海涛, 邱泽刚, 等. 不同P改性方式对Mo-Co/γ-Al2O3煤焦油加氢脱硫性能的影响[J]. 石油炼制与化工, 2016, 47(9): 67-74. |
HU Naifang, CUI Haitao, QIU Zegang, et al. Effects of phosphorus modification sequence on hydrodesulfurization of performance of coal tar over Mo-Co/γ-Al2O3[J]. Petroleum Processing and Petrochemicals, 2016, 47(9): 67-74. | |
22 | HOUALLA M, BRODERICK D H, SAPRE A V, et al.Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed by sulfided Co-Mo/γ-Al2O3[J]. Journal of Catalysis, 1980, 61(2): 523-527. |
23 | KWAK C, LEE J J, BAE J S, et al. Hydrodesulfurization of DBT, 4-MDBT, and 4,6-DMDBT on fluorinated CoMoS/Al2O3 catalysts[J]. Applied Catalysis A: General, 2000, 200(1/2): 233-242. |
24 | MARINA Egorova, ROEL Prins. Mutual influence of the HDS of dibenzothiophene and HDN of 2-methylpyridine[J]. Journal of Catalysis, 2004, 221(1): 11-19. |
25 | REDDY B M, REDDY E P, SRINIVAS S T. Dispersion and activity of molybdena-alumina catalysts prepared by impregnation and solid/solid wetting methods[J]. Journal of Catalysis, 1992, 136(1): 50-58. |
26 | 张惠民, 赵震. 制备方法对Ni-Mo氧化物催化剂晶相结构的影响[J]. 工业催化, 2008, 16(9): 34-36. |
ZHANG Huimin, ZHAO Zhen. Effect of preparation method on crystal phase structure of Ni-Mo oxide catalyst[J]. Industrial Catalysis, 2008, 16(9): 34-36. | |
27 | 张大龙, 徐永卫, 李孟华, 等. 溶胶-凝胶法制备体相型Mo-Ni复合氧化物催化剂及其加氢脱硫性能研究[J]. 石油炼制与化工, 2016, 47(5): 67-73. |
ZHANG Dalong, XU Yongwei, LI Menghua, et al. Synthesis of Mo-Ni bulk catalyst by sol-gel method and its hydrodesulfurization performance[J]. Petroleum Processing and Petrochemicals, 2016, 47(5): 67-73. | |
28 | BRITO J L, LAINE J, PRATT K C. Temperature-programmed reduction of Ni-Mo oxides[J]. Journal of Materials Science, 1989, 24(2):425-431. |
29 | 赵瑞玉, 曹东炜, 曾令有, 等. 助剂Ni与载体的相互作用及其对NiMo/γ-Al2O3催化剂加氢脱硫性能的影响[J]. 燃料化学学报, 2016, 44(5): 564-569. |
ZHAO Ruiyu, CAO Dongwei, ZENG Lingyou, et al. Interaction between Ni promoter and Al2O3 support and its effect on the performance of NiMo/γ-Al2O3 catalyst in hydrodesulfurization[J]. Journal of Fuel Chemistry and Technology, 2016, 44(5): 564-569. | |
30 | ESWARAMOORTHI I, SUNDARAMURTHY V, DAS N, et al. Application of multi-walled carbon nanotubes as efficient support to NiMo hydrotreating catalyst[J]. Applied Catalysis A: General, 2008, 339(2): 187-195. |
31 | 周同娜, 尹海亮, 柳云骐, 等.磷含量对NiMo/γ-Al2O3催化剂活性相结构的影响[J]. 燃料化学学报, 2010, 38(1): 69-74. |
ZHOU Tongna, YIN Hailing, LIU Yunqi, et al. Effect of phosphorus content on the performance of NiMo/γ-Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2010, 38(1): 69-74. | |
32 | 王奇, 柯明, 于沛, 等. Ce浸渍方式对CoMo/CeAl2O3催化剂反应性能影响[J]. 化工进展, 2019, 38(7): 3163-3169. |
WANG Qi, KE Ming, YU Pei, et al. Effect of impregnation way of Ce on the performance of CoMo/CeAl2O3 catalyst in hydrodesulfurization [J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3163-3169. | |
33 | 段艳, 王欣, 侯凯湖. 还原条件对Ni-Mo非负载催化剂选择性加氢脱氧的影响[J]. 高校化学工程学报, 2016, 30(6): 1451-1457. |
DUAN Yan, WANG Xin, HOU Kaihu. Effect of reduction conditions on unsurpport Ni-Mo composite oxide catalyst for selective hydrodeoxgenation[J]. Journal of Chemical Engineering of Chinese Universities, 2016, 30(6): 1451-1457. | |
34 | ZHOU Wenwu, ZHOU Yasong, WEI Qiang, et al. Gallium modified HUSY zeolite as an effective cosupport for NiMo hydrodesulfurization catalyst and the catalyst’s high isomerization selectivity[J]. Chemistry, 2017, 23(39): 9369-9382. |
35 | JOHNSON G R, BELL A T. Effects of Lewis acidity of metal oxide promoters on the activity and selectivity of Co-based Fischer-Tropsch synthesis catalysts[J]. Journal of Catalysis, 2016, 338: 250-264. |
36 | 李硕, 刘熠斌, 冯翔, 等. MoS2基催化剂加氢脱硫反应活性相和作用机理研究进展[J]. 化工进展, 2019, 38(2): 867-875. |
LI Shuo, LIU Yibin, FENG Xiang, et al. Research progress in active phase structure and reaction mechanism of MoS2-based catalysts for hydrodesulfurization[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 867-875. | |
37 | ZHENG P, DUAN A J, CHI K B, et al. Influence of sulfur vacancy on thiophene hydrodesulfurization mechanism at different MoS2 edges: a DFT study[J]. Chemical Engineering Science, 2017, 164: 292-306. |
38 | WAGNER C D. Handbook of X-ray photoelectron spectroscopy[M]. RIGGS W M. Minnesota: Perkin-Elmer Corporation, 1979: 104-105. |
39 | LI D, NISHIJIMA A, MORRIS D E. Zeolite-supported Ni and Mo catalysts for hydrotreatments: Ⅰ. Catalytic activity and spectroscopy[J]. Journal of Catalysis, 1999, 182(2): 339-348. |
40 | ROSARIO H H, JOSEFA M M R, PEDRO M T, et al. Hydrogenation and ring-opening of tetralin on Ni and NiMo supported on alumina-pillared α-zirconium phosphate catalysts. A thiotolerance study[J]. Journal of Catalysis, 2001, 203(1): 122-132. |
41 | UZKAN U S, ZHANG L P, NI S Y, et al. Investigation of the role of nickel and the effect of gas phase sulfur compounds on the performance of Ni-Mo/γ-Al2O3 hydrodenitrogenation catalysts[J]. Journal of Catalysis, 1994, 148(1): 181-193. |
42 | PORTELA L, GRANGE P, DELMON B. XPS and NO adsorption studies on alumina-supported Co-Mo catalysts sulfided by different procedures[J]. Journal of Catalysis, 1995, 156(2): 243-254. |
43 | CHENG F Y, CHEN J, GOU X L. MoS2-Ni nanocomposites as catalysts for hydrodesulfurization of thiophene and thiophene derivatives[J]. Advanced Materials, 2010, 18(19): 2561-2564. |
44 | SEUNG T H, DAL R P, SEUNG J Y, et al. Characterization of the active phase of NiMo/Al2O3 hydrodesulfurization catalysts[J]. Research on Chemical Intermediates, 2006, 32(9): 857-870. |
45 | LIU Sijia, JIN Qiu, XU Yuan, et al. The synergistic effect of Ni promoter on Mo-S/CNT catalyst towards hydrodesulfurization and hydrogen evolution reactions[J]. Fuel, 2018, 232: 36-44. |
46 | 焦玉萍. NiMoS活性相的可控构建与催化性能的研究[D]. 青岛: 中国石油大学(华东), 2014. |
JIAO Yuping. The active phase construction of NiMoS supported catalysts and study of catalytic performance[D]. Qingdao: China University of Petroleum(East China), 2014. | |
47 | 尹海亮, 刘新亮, 周同娜, 等. 乙二醇对磷掺杂NiMo/Al2O3加氢催化剂性能的影响[J]. 燃料化学学报, 2019, 47(12): 1458-1467. |
YI Hailiang, LIU Xinliang, ZHOU Tongna, et al. Effect of ethylene glycol on the hydrogenation performance of P-doped NiMo/Al2O3 catalyst[J]. Journal of Fuel Chemistry and Technology, 2019, 47(12): 1458-1467. | |
48 | MADEIRA L M, MARTIN-ARANDA R M, MALDONADO-HÓDAR F J, et al. Oxidative dehydrogenation of n-butane over alkali and alkaline earth-promoted α-NiMoO4 catalysts[J]. Journal of Catalysis, 1997, 169(2): 469-479. |
49 | DUFRESNE P, PAYEN E, GRIMBLOT J, et al. Study of nickel-molybdenum-.gamma.-aluminum oxide catalysts by X-ray photoelectron and Raman spectroscopy. comparison with cobalt-molybdenum-.gamma.-aluminum oxide catalysts[J]. Journal of Physical Chemistry, 1981, 85(16): 2344-2351. |
50 | ROCHET A, BAUBET B, MOIZAN V, et al. Influence of the preparation conditions of oxidic NiMo/Al2O3 catalysts on the sulfidation ability: a quick-XAS and Raman spectroscopic study[J]. The Journal of Physical Chemistry C, 2015, 119(42): 23928-23942. |
51 | GONZÁLEZ-CORTÉS S L, XIAO T C, COSTA P M F J, et al. Urea-organic matrix method: an alternative approach to prepare Co-MoS2/ γ-Al2O3 HDS catalyst[J]. Applied Catalysis A: General, 2004, 270(1/2): 209-222. |
[1] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[2] | WU Zhanhua, SHENG Min. Pitfalls of accelerating rate calorimeter for reactivity hazard evaluation and risk assessment [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3374-3382. |
[3] | SUN Xudong, ZHAO Yuying, LI Shirui, WANG Qi, LI Xiaojian, ZHANG Bo. Textual quantitative analysis on China’s local hydrogen energy development policies [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478-3488. |
[4] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[5] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[6] | YU Shan, DUAN Yuangang, ZHANG Yixin, TANG Chun, FU Mengyao, HUANG Jinyuan, ZHOU Ying. Research progress of catalysts for two-step hydrogen sulfide decomposition to produce hydrogen and sulfur [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3780-3790. |
[7] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[8] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[9] | ZHANG Wei, QIN Chuan, XIE Kang, ZHOU Yunhe, DONG Mengyao, LI Jie, TANG Yunhao, MA Ying, SONG Jian. Application and performance enhancement challenges of H2-SCR modified platinum-based catalysts for low-temperature denitrification [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2954-2962. |
[10] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
[11] | MA Yuan, XIAO Qingyue, YUE Junrong, CUI Yanbin, LIU Jiao, XU Guangwen. CO xco-methanation over a Ni-based catalyst supported on CeO2-Al2O3 composite [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2421-2428. |
[12] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[13] | WANG Jia, PENG Chong, TANG Lei, LU Anhui. Modification of the active phase structure of residue hydrogenation catalyst and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1811-1821. |
[14] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[15] | ZHAO Zhenzhen, ZHENG Xi, WANG Xueqi, WANG Tao, FENG Yingnan, REN Yongsheng, ZHAO Zhiping. Research progress on microporous supporting substrate of polyamide composite membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1917-1933. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |