Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (2): 870-880.DOI: 10.16085/j.issn.1000-6613.2020-0571
• Industrial catalysis • Previous Articles Next Articles
Zhangliang LI1,2,3(), Xiaoxu ZHAO1,2,3, Jianhui HUANG1,2,3, Houqiong WANG1, Ping LI1
Received:
2020-04-13
Revised:
2020-06-22
Online:
2021-02-09
Published:
2021-02-05
Contact:
Zhangliang LI
李章良1,2,3(), 赵晓旭1,2,3, 黄建辉1,2,3, 王侯琼1, 李萍1
通讯作者:
李章良
作者简介:
李章良(1975—),男,硕士,副教授,研究方向为污水处理与资源化。E-mail:基金资助:
CLC Number:
Zhangliang LI, Xiaoxu ZHAO, Jianhui HUANG, Houqiong WANG, Ping LI. Degradation of dimethyl phthalate in aqueous solution by microwave-induced catalytic oxidation with Fe3O4/activated carbon catalyst[J]. Chemical Industry and Engineering Progress, 2021, 40(2): 870-880.
李章良, 赵晓旭, 黄建辉, 王侯琼, 李萍. 微波诱导Fe3O4/AC催化氧化降解邻苯二甲酸二甲酯[J]. 化工进展, 2021, 40(2): 870-880.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0571
工业分析/% | 元素分析/% | |||||||
---|---|---|---|---|---|---|---|---|
水分 | 挥发分 | 固定碳 | 灰分 | C | H | N | O | |
2.69 | 74.82 | 21.93 | 0.56 | 76.59 | 1.50 | 0.70 | 21.21 |
工业分析/% | 元素分析/% | |||||||
---|---|---|---|---|---|---|---|---|
水分 | 挥发分 | 固定碳 | 灰分 | C | H | N | O | |
2.69 | 74.82 | 21.93 | 0.56 | 76.59 | 1.50 | 0.70 | 21.21 |
催化剂 | 比表面积 /m2·g-1 | 孔容/cm2·g-1 | 中孔率 /% | 平均 孔径 /nm | ||
---|---|---|---|---|---|---|
总孔容 | 微孔孔容 | 中孔孔容 | ||||
AC | 1235.6 | 0.726 | 0.467 | 0.259 | 35.67 | 1.086 |
Fe3O4/AC | 762.4 | 0.469 | 0.254 | 0.215 | 45.84 | 1.104 |
催化剂 | 比表面积 /m2·g-1 | 孔容/cm2·g-1 | 中孔率 /% | 平均 孔径 /nm | ||
---|---|---|---|---|---|---|
总孔容 | 微孔孔容 | 中孔孔容 | ||||
AC | 1235.6 | 0.726 | 0.467 | 0.259 | 35.67 | 1.086 |
Fe3O4/AC | 762.4 | 0.469 | 0.254 | 0.215 | 45.84 | 1.104 |
不同反应体系 | 一级拟合方程 | kobs /min-1 | R2 | 半衰期 /min |
---|---|---|---|---|
MW | y=0.0082x-0.0028 | 0.0082 | 0.9776 | 84.53 |
Fe3O4 | y=0.0354x+0.0194 | 0.0354 | 0.9853 | 19.54 |
Fe3O4/AC | y=0.0603x+0.0431 | 0.0603 | 0.9896 | 11.49 |
MW+Fe3O4 | y=0.1577x-0.0006 | 0.1577 | 0.9981 | 4.40 |
MW+Fe3O4/AC | y=0.3087x+0.0682 | 0.3087 | 0.9969 | 2.25 |
不同反应体系 | 一级拟合方程 | kobs /min-1 | R2 | 半衰期 /min |
---|---|---|---|---|
MW | y=0.0082x-0.0028 | 0.0082 | 0.9776 | 84.53 |
Fe3O4 | y=0.0354x+0.0194 | 0.0354 | 0.9853 | 19.54 |
Fe3O4/AC | y=0.0603x+0.0431 | 0.0603 | 0.9896 | 11.49 |
MW+Fe3O4 | y=0.1577x-0.0006 | 0.1577 | 0.9981 | 4.40 |
MW+Fe3O4/AC | y=0.3087x+0.0682 | 0.3087 | 0.9969 | 2.25 |
1 | 陈成, 何欢, 杨绍贵, 等. 微波诱导NiO催化降解水中邻苯二甲酸二甲酯[J]. 中国环境科学, 2018, 38(7): 2512-2519. |
CHEN Cheng, HE Huan, YANG Shaogui, et al. Degradation of dimethyl phthalate in microwave-induced NiO catalytic system[J]. China Environmental Science, 2018, 38(7): 2512-2519. | |
2 | NET S, SEMPÉRÉ R, DELMONT A, et al. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices[J]. Environmental Science & Technology, 2015, 49(7): 4019-4035. |
3 | WANG J, CHEN G, CHRISTIE P, et al. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhou[J]. Science of the Total Environment, 2015, 523: 129-137. |
4 | 翟斌, 王朝万, 张巍, 等. 环境介质中邻苯二甲酸酯类化合物的环境行为及生态风险研究进展[J]. 环境与健康杂志, 2016, 33(11): 1030-1034. |
ZHAI Bin, WANG Chaowan, ZHANG Wei, et al. Environmental behavior and ecotoxicological risk of phthalic acid esters: a review of recent studies[J]. Journal of Environment and Health, 2016, 33(11): 1030-1034. | |
5 | LIU Y, GUAN Y T, YANG Z H, et al. Toxicity of seven phthalate esters to embryonic development of the abalone halitosis diverticular supertexta[J]. Ecotoxicology, 2018, 18(3): 293-303. |
6 | BUI T T, GIOVANOULIS G, COUSINS A P, et al. Human exposure, hazard and risk of alternative plasticizers to phthalate esters[J]. Science of the Total Environment, 2016, 541: 451-467. |
7 | 胡晓宇, 张克荣, 孙俊红, 等. 中国环境中邻苯二甲酸酯类化合物污染的研究[J]. 中国卫生检验杂志, 2003, 13(1): 9-14. |
HU Xiaoyu, ZHANG Kerong, SUN Junhong, et al. Study on the pollution of phthalate esters in the environment of China[J]. Chinese Journal of Health Laboratory Technology, 2003, 13(1): 9-14. | |
8 | 张颖, 董俊伟, 王蕾, 等. 邻苯二甲酸二甲酯(DMP)对黄瓜抗氧化代谢及果实品质的影响[J]. 农业环境科学学报, 2017, 36(5): 847-854. |
ZHANG Ying, DONG Junwei, WANG Lei, et al. Toxic effects of dimethyl phthalate on cucumber at the growth stage[J]. Journal of Agro-Environment Science, 2017, 36(5): 847-854. | |
9 | WANG W L, WU Q Y, WANG C, et al. Health risk assessment of phthalate esters (PAEs) in drinking water sources of China[J]. Environmental Science and Pollution Research, 2015, 22(5): 3620-3630. |
10 | BAJT O, MAILHOT G, BOLTE M. Degradation of dibutyl phthalate by homogeneous photocatalysis with Fe() in aqueous solution[J]. Applied Catalysis B: Environmental, 2001, 33(3): 239-248. |
11 | 李章良, 黄建辉, 肖尚忠, 等. 活性炭负载Fe3+催化H2O2氧化邻苯二甲酸二甲酯[J]. 环境工程学报, 2014, 8(3): 827-833. |
LI Zhangliang, HUANG Jianhui, XIAO Shangzhong, et al. Degradation of dimethyl phthalate solution catalyzed by Fe3+ immobilized activated carbon in the presence of H2O2[J]. Chinese Journal of Environmental Engineering, 2014, 8(3): 827-833. | |
12 | YIN J Y, CAI J J, YIN C, et al. Degradation performance of crystal violet over CuO@AC and CeO2-CuO@AC catalysts using microwave catalytic oxidation degradation method[J]. Journal of Environmental Chemical Engineering, 2016(4): 958-964. |
13 | LIU Z L, MENT H L, ZHANG H, et al. Highly efficient degradation of phenol wastewater by microwave induced H2O2-CuOx/GAC catalytic oxidation process[J]. Separation and Purification Technology, 2018, 193: 49-57. |
14 | 刘再亮, 孟海玲, 周科, 等. 微波-载铜活性炭催化氧化降解腐殖酸[J]. 过程工程学报, 2018, 18(4): 886-892. |
LIU Zailiang, MENG Hailing, ZHOU Ke, et al. Degradation of humic acid by microwave-Cu loaded activated carbon catalytic oxidation[J]. The Chinese Journal of Process Engineering, 2018, 18(4): 886-892. | |
15 | 李章良, 饶艳英, 赵晓旭, 等. 微波诱导改性活性炭催化降解邻苯二甲酸二甲酯[J]. 环境工程学报, 2019, 13(2): 341-347. |
LI Zhangliang, RAO Yanying, ZHAO Xiaoxu, et al. Degredation of dimethyl phthalate in aqueous solution by microwave-induced catalytic oxidation with modified activated carbon[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 341-347. | |
16 | 杨全, 张浩, 卜龙利. 复合载体负载型催化剂制备及其微波辅助催化氧化甲苯性能试验[J]. 西安建筑科技大学学报(自然科学版), 2014, 46(1): 131-136. |
YANG Quan,ZHANG Hao,BO Longli. Preparation of composite carrier loaded catalyst and microwave assisted catalytic oxidation of gaseous toluene[J]. Journal Xi’an University of Architecture and Technology (Natural Science Edition), 2014, 46(1): 131-136. | |
17 | REMYA N, LIN J G. Microwave-granular activated carbon (MW-GAC) system for carbofuran degradation: analysis of characteristics and recyclability of the spent GAC[J]. Desalination & Water Treatment, 2015, 53(6): 1621-1631. |
18 | LEE C L, JOU C J G, PAUL H. Enhanced degradation of chlorobenzene in aqueous solution using microwave-induced zero-valent iron and copper particles[J]. Water Environment Research, 2010, 82(7): 642-647. |
19 | LIU S Y, MEI L F, LIANG X L, et al. Anchoring Fe3O4 nanoparticles on carbon nanotubes for microwave-induced catalytic degradation of antibiotics[J]. ACS Applied Materials & Interfaces, 2018, 10: 29467-29475. |
20 | SHI W, LIU X Y, ZHANG T T, et al. Magnetic nano-sized cadmium ferrite as an efficient catalyst for the degradation of Congo red in the presence of microwave irradiation[J]. RSC Advances, 2015, 5: 51027-51034. |
21 | YIN C, CAI J J, GAO L F, et al. Highly efficient degradation of 4-nitrophenol over the catalyst of Mn2O3/AC by microwave catalytic oxidation degradation method[J]. Journal of Hazardous Materials, 2016, 305: 15-20. |
22 | XU P, MA W C, HOU B L, et al. A novel integration of microwave catalytic oxidation and MBBR process and its application in advanced treatment of biologically pretreated Lurgi coal gasification wastewater[J]. Separation and Purification Technology, 2017, 177: 233-238. |
23 | 郑庆福, 王志民, 陈保国, 等. 制备生物炭的结构特征及炭化机理的XRD光谱分析[J]. 光谱学与光谱分析, 2016, 36(10): 3355-3359. |
ZHENG Qingfu, WANG Zhimin, CHEN Baoguo, et al. Analysis of XRD spectral structure and carbonization of the biochar preparation[J]. Spectroscopy and Spectral Analysis, 2016, 36(10): 3355-3359. | |
24 | 宋小宝, 何世颖, 冯彦房, 等. 载镧磁性水热生物炭的制备及其除磷性能[J]. 环境科学, 2020, 41(2): 773-783. |
SONG Xiaobao, HE Shiying, FENG Yanfang, et al. Fabrication of La-MHTC composites for phosphate removal: adsorption behavior and mechanism[J]. Environmental Science, 2020, 41(2): 773-783. | |
25 | 朱荣, 江雯, 曾晓波, 等. 不同方法制备的Fe3O4磁性纳米粒表面性能研究[J]. 四川大学学报(自然科学版), 2011, 48(1): 133-138. |
ZHU Rong, JIANG Wen, ZENG Xiaobo, et al. The surface property investigation of Fe3O4 nanoparticles synthesized via different methods[J]. Journal of Sichuan University(Natural Science Edition), 2011, 48(1): 133-138. | |
26 | LU J, JIAO X L, CHEN D R, et al. Solvothermal synthesis and characterization of Fe3O4 and γ-Fe2O3 nanoplates[J]. The Journal of Physical Chemistry C, 2009, 113: 4012-4017. |
27 | 谷麟, 陈旭, 吴思帆, 等. 微量1,6-己二胺改性纳米Fe3O4对PVDF共混膜性能的影响[J]. 环境工程学报, 2019, 13(2): 291-301. |
GU Lin, CHEN Xu, WU Sifan, et al. Effect of trace 1,6-hexanediamine-modified nano-Fe3O4 on physiochemical properties of PVDF composite membrane[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 291-301. | |
28 | 师艳婷, 乔生莉, 张巧玲, 等. 磁性光催化剂Fe3O4/SiO2/TiO2的制备及光催化降解苯酚[J]. 化工进展, 2018, 37(11): 4322-4329. |
SHI Yanting, QIAO Shengli, ZHANG Qiaoling, et al. Preparation of Fe3O4/SiO2/TiO2 magnetic photocatalyst and the photocatalytic degradation of phenol[J]. Chemical Industry and Engineering Progress, 2018, 37(11): 4322-4329. | |
29 | HE J, YANG X F, ZhANG W J, et al. Catalyzed oxidation of catechol by the heterogeneous Fenton-like reaction of nano-Fe3O4-H2O2 system[J]. Environmental Science, 2013, 34(5): 1773-1781. |
30 | 张依含, 史静, 杜琼, 等. 磁性生物炭非均相类Fenton体系去除水中四环素[J]. 工业水处理, 2020, 40(2): 32-35. |
ZhANG Yihan, SHI Jing, DU Qiong, et al. Tetracycline removal in the magnetic biochar heterogeneous Fenton-like system[J]. Industrial Water Treatment, 2020, 40(2): 32-35. | |
31 | 殷诚, 周继承, 尹静雅, 等. 微波催化剂CuO/AC微波催化氧化降解废水中的苯酚[J]. 环境工程学报, 2015, 9(11): 5329-5335. |
YIN Cheng, ZHOU Jicheng, YIN Jingya, et al. Microwave catalytic oxidation degradation of phenol in wastewater over CuO/AC microwave catalyst[J]. Chinese Journal of Environmental Engineering, 2015, 9(11): 5329-5335. | |
32 | REMYA N, LIN J G. Current status of microwave application in wastewater treatment—A review[J]. Chemical Engineering Journal, 2011, 166(3): 797-813. |
33 | 宋振宇, 童张法, 张寒冰, 等. 微波辅助制备纳米ZnO及其光催化降解染料的性能[J]. 化工进展, 2015, 34(12): 4310-4314. |
SONG Zhenyu, TONG Zhangfa, ZHANG Hanbing, et al. Photocatalytic degradation of dyes by nano-ZnO prepared with microwave assistance[J]. Chemical Industry and Engineering Progress, 2015, 34(12): 4310-4314. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[6] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[7] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[8] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[9] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[10] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[11] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[12] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[13] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[14] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[15] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |