Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (10): 5270-5280.DOI: 10.16085/j.issn.1000-6613.2021-0806
• Special column:Resource recycling and value-added utilization • Previous Articles Next Articles
WANG Man1,2(), XI Xiaoli1,3(), WANG Yanan1, TANG Kangyao1
Received:
2021-04-16
Revised:
2021-05-30
Online:
2021-10-25
Published:
2021-10-10
Contact:
XI Xiaoli
通讯作者:
席晓丽
作者简介:
王曼(1987—),女,助理研究员,研究方向为高性能金属材料。E-mail:基金资助:
CLC Number:
WANG Man, XI Xiaoli, WANG Yanan, TANG Kangyao. Research progress and challenges in recycling of typical alloys[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5270-5280.
王曼, 席晓丽, 王亚楠, 唐康尧. 典型合金循环利用研究进展及挑战[J]. 化工进展, 2021, 40(10): 5270-5280.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0806
1 | 翟明国, 吴福元, 胡瑞忠. 战略性关键金属矿产资源: 现状与问题[J]. 中国科学基金, 2019, 33(2): 106-111. |
ZHAI Mingguo, WU Fuyuan, HU Ruizhong. Strategic key metal mineral resources: status and problems[J]. Science Foundation of China, 2019, 33(2): 106-111. | |
2 | GEISSDOERFER M, SAVAGET P, BOCKEN N M P, et al. The circular economy—A new sustainability paradigm?[J]. Journal of Cleaner Production, 2016(143): 757-768. |
3 | 余泽全. 中国钨行业现状分析及建议[J]. 国土资源情报, 2020(10): 55-60. |
YU Z Q. Current situation analysis and suggestions of tungsten industry in China[J]. Land and Resources Information, 2020(10): 55-60. | |
4 | KATIYAR P K. A comprehensive review on synergy effect between corrosion and wear of cemented tungsten carbide tool bits: a mechanistic approach[J]. International Journal of Refractory Metals and Hard Materials, 2020(92): 105315. |
5 | 周新华, 王力民, 彭英健. 我国硬质合金再生产业现状与发展[J]. 硬质合金, 2016, 33(5): 356-364. |
ZHOU X H, WANG L M, PENG Y J. Status and development of cemented carbide recycling industry in China[J]. Cemented Carbide, 2016, 33(5): 356-364. | |
6 | 赵秦生. 硬质合金回收简便方法——机械破碎法的新进展[J]. 稀有金属与硬质合金, 2002, 30(3): 58-59. |
ZHAO Q S. Latest development of the mechanical grinding as the simplest method for recovering hard metal scrap[J]. Rare Metals and Cemented Carbides, 2002, 30(3): 58-59. | |
7 | PEE J H, KIM Y J, KIM J Y, et al. Decomposition mechanism and decomposition promoting factors of waste hard metal for zinc decomposition process (ZDP)[J]. IOP Conference Series: Materials Science and Engineering, 2011, 18(20): 202028. |
8 | PEE J H, KIM G H, LEE H Y, et al. Extraction factor of tungsten sources from tungsten scraps by zinc decomposition process[J]. Archives of Metallurgy and Materials, 2015, 60(2): 1311-1314. |
9 | ALTUNCU E, USTEL F, TURK A, et al. Cutting-tool recycling process with the zinc-melt method for obtaining thermal-spray feedstock powder (WC-Co)[J]. Materiali in Tehnologije, 2013, 47: 115-118. |
10 | KATIYAR P K, RANDHAWA N S, HAIT J, et al. An overview on different processes for recovery of valuable metals from tungsten carbide scrap[C]// International Conference on Nonferrous Minerals and Metals (ICNFMM), 2014. |
11 | 杨斌, 陈广军, 石安红, 等. 废旧硬质合金短流程回收技术的研究现状[J]. 材料导报, 2015, 29(3): 68-74. |
YANG B, CHEN G J, SHI A H, et al. Review on technologies of short recycle process for scrap cemented carbide[J]. Materials Review, 2015, 29(3): 68-74. | |
12 | 陈破, 李海坤. 硬质合金高温处理回收工艺研究[J]. 硬质合金, 2001, 18(4): 201-203. |
CHEN P, LI H K. Study on the technique of reclaiming cemented carbide by high-temperature treatment[J]. Cemented Carbide, 2001, 18(4): 201-203. | |
13 | KATIYAR P K, RANDHAWA N S. A comprehensive review on recycling methods for cemented tungsten carbide scraps highlighting the electrochemical techniques[J]. International Journal of Refractory Metals and Hard Materials, 2020, 90: 105251. |
14 | SRINIVASAN G N, VARADHARAJ A, ABDUL KADER J A M. Anodic leaching of tungsten alloy swarf: a statistical approach[J]. Journal of Applied Electrochemistry, 1994, 24(11): 1191-1193. |
15 | KATIYAR P K, RANDHAWA N S, HAIT J, et al. Anodic dissolution behaviour of tungsten carbide scraps in ammoniacal media[J]. Advanced Materials Research, 2014, 828: 11-20. |
16 | XI Xiaoli, SI Guanhao, NIE Zuoren, et al. Electrochemical behavior of tungsten ions from WC scrap dissolution in a chloride melt[J]. Electrochimica Acta, 2015, 184: 233-238. |
17 | SI Guanhao, XI Xiaoli, NIE Zuoren, et al. Preparation and characterization of tungsten nanopowders from WC scrap in molten salts[J]. International Journal of Refractory Metals and Hard Materials, 2016, 54: 422-426. |
18 | XI Xiaoli, SI Guanhao, NIE Zuoren, et al. Electrochemical preparation of tungsten and cobalt from cemented carbide scrap in NaF-KF molten salts[J]. International Journal of Refractory Metals and Hard Materials, 2018, 70: 77-83. |
19 | ZHANG Liwen, NIE Zuoren, XI Xiaoli, et al. Electrochemical separation and extraction of cobalt and tungsten from cemented scrap[J]. Separation and Purification Technology, 2018, 195: 244-252. |
20 | ZHANG L W, NIE Z R, XI X L, et al. Electrochemical dissolution of tungsten carbide in NaCl-KCl-Na2WO4 molten salt[J]. Metallurgical and Materials Transactions B, 2018, 49(1): 334-340. |
21 | ZHANG Qinghua, XI Xiaoli, NIE Zuoren, et al. Electrochemical dissolution of cemented carbide scrap and electrochemical preparation of tungsten and cobalt metals[J]. International Journal of Refractory Metals and Hard Materials, 2018, 79: 145-153. |
22 | 张力文. 熔盐电解回收废高钴硬质合金的新工艺及机理研究[D]. 北京: 北京工业大学, 2018. |
ZHANG Liwen. A new process and mechanism for the recovery of waste high cobalt cemented carbide by molten salt electrolysis[D]. Beijing: Beijing University of Technology, 2018. | |
23 | VARSHNEY D, KUMAR K. Application and use of different aluminium alloys with respect to workability, strength and welding parameter optimization[J]. Ain Shams Engineering Journal, 2021, 12(1): 1143-1152. |
24 | 潘昭帅, 张照志, 张泽南, 等. 中国铝土矿进口来源国国别研究[J]. 中国矿业, 2019, 28(2): 13-17, 24. |
PAN Z S, ZHANG Z Z, ZHANG Z N, et al. Analysis of the import source country of the bauxite in China[J]. China Mining Magazine, 2019, 28(2): 13-17, 24. | |
25 | MEYER F M. Availability of bauxite reserves[J]. Natural Resources Research, 2004, 13(3): 161-172. |
26 | DING N, GAO F, WANG Z H, et al. Environment impact analysis of primary aluminum and recycled aluminum[J]. Procedia Engineering, 2012, 27: 465-474. |
27 | 中国再生铝行业发展概况、市场供求情况、市场容量及影响行业发展的主要因素分析[J]. 资源再生, 2020(10): 43-47. |
Development of China's recycled aluminum industry, market supply and demand, market capacity and the main factors affecting the development of the industry[J]. Resources Recycling, 2020(10): 43-47. | |
28 | VERMA R P, LILA M K. A short review on aluminium alloys and welding in structural applications[J/OL]. Materials Today: Proceedings. . |
29 | GEORGANTZIA E, GKANTOU M, KAMARIS G S. Aluminium alloys as structural material: a review of research[J]. Engineering Structures, 2021, 227: 111372. |
30 | 黄正阳. 6061再生铝合金的组织控制与性能研究[D]. 广州: 华南理工大学, 2019. |
HUANG Z Y. Microstructure control and properties of 6061 recyclated aluminum alloy[D]. Guangzhou: South China University of Technology, 2019. | |
31 | 杨富强. 闭环回收助推再生铝产业跨越式发展[J]. 资源再生, 2020(10): 18-21. |
YANG Fuqiang. Closed-loop recycling to boost the leapfrog development of recycled aluminum industry[J]. Resources Recycling, 2020(10): 18-21. | |
32 | GAUSTAD G, OLIVETTI E, KIRCHAIN R. Improving aluminum recycling: a survey of sorting and impurity removal technologies[J]. Resources Conservation and Recycling, 2012, 58: 79-87. |
33 | 范超, 龙思远, 李聪, 等. 废铝分类分离技术的研究进展[J]. 轻金属, 2012(7): 61-64. |
FAN C, LONG S Y, LI C, et al. The status and development of separating and sorting technology on aluminium scrap[J]. Light Metals, 2012(7): 61-64. | |
34 | COTTER-HOWELLS J. The physical separation and recovery of metals from wastes[J]. Mineralogical Magazine, 1995, 59: 363-364. |
35 | GESING A, WOLANSKI R. Recycling light metals from end-of-life vehicle[J]. JOM, 2001, 53: 21-23. |
36 | 韦漩, 王海娟, 刘春伟, 等. 废旧铝合金回收利用的研究现状[J]. 过程工程学报, 2019, 19(1): 45-54. |
WEI Xuan, WANG Haijuan, LIU Chunwei, et al. Research status of waste aluminum alloy recycling[J]. Journal of Process Engineering, 2019, 19(1): 45-54. | |
37 | HUGGINS R A. Thermodynamics of materials, Volume Ⅱ[J]. Materials Research Bulletin, 1995, 30(9): 1182-1184. |
38 | UTIGARD T A. The properties and uses of fluxes in molten aluminum processing[J]. JOM, 1998, 50(11): 38-43. |
39 | 王刚, 高安江, 曲信磊, 等. 再生铝的熔炼技术研究[J]. 再生资源与循环经济, 2015, 8(4): 31-34. |
WANG G, GAO A J, QU X L, et al. Research on the recycled aluminum smelting technology[J]. Recycling Research, 2015, 8(4): 31-34. | |
40 | 张邦胜, 刘贵清, 刘昱辰, 等.世界镍矿资源与市场分析[J].中国资源综合利用, 2020, 38(7): 94-98. |
ZHANG Bangsheng, LIU Guiqing, LIU Yuchen, et al. Global nickel resources and market analysis[J]. Comprehensive Utilization of Resources in China, 2020, 38(7): 94-98. | |
41 | NAKAJIMA K, DAIGO I, NANSAI K, et al. Global distribution of material consumption: nickel, copper, and iron[J]. Resources, Conservation and Recycling, 2018, 133: 369-374. |
42 | ALVIALl-HEIN G, MAHANDRA H, GHAHREMAN A. Separation and recovery of cobalt and nickel from end of life products via solvent extraction technique: a review[J]. Journal of Cleaner Production,2021, 297: 126592. |
43 | 曾冬铭, 李立波, 毛剑. 含镍废料的回收利用[J]. 中国物资再生, 1997(9):11-13. |
ZENG Dongming, LI Libo, MAO Jian. Recycling of nickel containing waste[J]. Material Recycling in China, 1997(9): 11-13. | |
44 | 徐爱东, 顾其德, 范润泽. 我国再生镍钴资源综合利用现状[J]. 中国有色金属, 2013(3): 64-65. |
XU Aidong, GU Qide, FAN Runze. Current situation of comprehensive utilization of recycled nickel and cobalt resources in China[J]. China Nonferrous Metals, 2013(3):64-65. | |
45 | SRIVASTAVA R R, KIM M S, LEE J C, et al. Resource recycling of superalloys and hydrometallurgical challenges[J]. Journal of Materials Science, 2014, 49(14): 4671-4686. |
46 | 袁超, 郭建亭, 王铁利, 等. 返回料添加比例对铸造钴基高温合金K640S 组织与性能的影响[J]. 金属学报, 2000, 36(9): 961-965. |
YUAN C, GUO J T, WANG T L, et al. Effect of revert proportion on microstructure and property of a cast cobalt-base superalloy K640S[J]. Acta Metallurgica Sinica, 2000, 36(9): 961-965. | |
47 | 蒲永亮. 高温合金K418和GH4169返回料的净化与成分调控[D]. 兰州: 兰州理工大学, 2018. |
PU Y L. Purification and composition control of superalloy K418 and GH4169 returns[D]. Lanzhou: Lanzhou University of Technology, 2018. | |
48 | PAPP J F. Superalloy recycling 1976-1986[C]// Proceedings of the Sixth International Symposium, Champion, PA, 1988: 367-376. |
49 | 谢君, 王道红, 侯桂臣,等. 一种高温合金返回料的分类回收方法: CN111304470A[P]. 2020. |
XIE Jun, WANG Daohong, HOU Guichen, et al. A method for classification and recovery of superalloy returns: CN111304470A[P]. 2020. | |
50 | 余乾, 宋尽霞, 王定刚, 等. 返回料比例对镍基高温合金K465组织和性能的影响[J]. 材料工程, 2006, 34(6): 9-12. |
YU Q, SONG J X, WANG D G, et al. Effect of recycled alloy proportion on microstructure and mechanical properties of Ni-based superalloy K465[J]. Journal of Materials Engineering, 2006, 34(6): 9-12. | |
51 | 曲红霞. 镍基高温合金组织性能与净化工艺的研究[D]. 兰州: 兰州理工大学, 2016. |
QU H X. Microstructure, properties and purification process of nickel base superalloy[D]. Lanzhou: Lanzhou University of Technology, 2016. | |
52 | 满延林, 王宇飞, 杨刚, 等. 返回次数对镍基K4169合金组织及性能的影响[J]. 稀有金属, 2012, 36(1): 54-60. |
MAN Y L, WANG Y F, YANG G, et al. Effect of revert recycle times on microstructure and mechanical properties of Ni-based superalloy K4169[J]. Chinese Journal of Rare Metals, 2012, 36(1): 54-60. | |
53 | 朱智武. 泡沫陶瓷过滤片的应用[C]//第十三届全国铸造年会暨2016中国铸造活动周, 2016. |
ZHU Zhiwu. Application of foam ceramic filter[C]//The Thirteenth National Foundry Annual Meeting and 2016 China Casting Week, 2016. | |
54 | 蒲永亮, 寇生中, 张志栋, 等. 复合盐净化剂对GH4169返回料成分和组织的影响[J]. 有色金属(冶炼部分), 2018(7): 57-61. |
PU Y L, KOU S Z, ZHANG Z D, et al. Effects of compound salt purifiers on composition and microstructure of GH4169 returned alloy[J]. Nonferrous Metals (Extractive Metallurgy), 2018(7): 57-61. | |
55 | 陈长军, 陈振斌, 孙元, 等. 高温合金废料回收再利用的研究进展及未来发展方向[J]. 材料导报, 2019, 33(21): 3654-3661. |
CHEN Z J, CHEN Z B, SUN Y, et al. Research progress and future development direction of recycling and reuse of superalloy scraps[J]. Materials Review, 2019, 33(21): 3654-3661. | |
56 | REDDEN L D, GROVES R D, SEIDEL D C. Hydrometallurgical recovery of critical metals from hardface alloy grinding waste : a laboratory study[R]. United States, Bureau of Mines, 1988. |
57 | KIM M S, LEE J C, PARK H S, et al. A multistep leaching of nickel-based superalloy scrap for selective dissolution of its constituent metals in hydrochloric acid solutions[J]. Hydrometallurgy, 2018, 176: 235-242. |
58 | REED R C. The superalloys fundamentals and applications[M]. Cambridge: Cambridge University Press, 2006. |
59 | 聂祚仁, 刘宇, 孙博学, 等. 材料生命周期工程与材料生态设计的研究进展[J]. 中国材料进展, 2016, 35(3): 161-170. |
NIE Z R, LIU Y, SUN B X, et al. Research progress of life cycle engineering and eco-design in materials industry[J]. Materials China, 2016, 35(3): 161-170. | |
60 | LI X Y, LU K. Improving sustainability with simpler alloys[J]. Science, 2019, 364(6442): 733-734. |
[1] | HE Xuefeng, LIU Bo, ZHANG Shengen. Current status of control technology of Fe impurity in recycled aluminum alloy [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5251-5269. |
[2] | HOU Xuejun, ZHANG Xiaoming, CHENG Wenbo, WANG Xin, WANG Chunxia, XU Shengming, HUANG Guoyong. Research on disposal methods of spent vanadium-titanium-based catalysts [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5313-5324. |
[3] | Jie PAN, Yan LI. Research progress of zirconium-based chemical conversion coatings on typical wrought aluminum alloys [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4503-4515. |
[4] | Yagang YANG,Xiaohua YU,Lei ZHANG,Chunyang SHI,Xiaodong ZHUANG,Gang XIE. Electrochemical properties of Al-6061 and Al-7075 alloys as anode for aluminum air batteries [J]. Chemical Industry and Engineering Progress, 2020, 39(1): 145-151. |
[5] | XIE Lixin,TIAN Zhiguo. Removing copper ion from seawater with redox method [J]. Chemical Industry and Engineering Progree, 2012, 31(09): 1899-1902. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |