Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (1): 31-38.DOI: 10.16085/j.issn.1000-6613.2020-0500
• Chemical processes and equipment • Previous Articles Next Articles
Fang LUO1,2(), Jing WANG1, Zhikan YAO1(), Lin ZHANG1, Huanlin CHEN1
Received:
2020-04-01
Online:
2021-01-12
Published:
2021-01-05
Contact:
Zhikan YAO
罗方1,2(), 王晶1, 姚之侃1(), 张林1, 陈欢林1
通讯作者:
姚之侃
作者简介:
罗方(1982—),女,博士研究生,研究方向为膜科学与技术。E-mail:基金资助:
CLC Number:
Fang LUO, Jing WANG, Zhikan YAO, Lin ZHANG, Huanlin CHEN. Research progress on methodology for determining forward osmosis membrane parameters[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 31-38.
罗方, 王晶, 姚之侃, 张林, 陈欢林. 正渗透膜特征参数测试方法研究进展[J]. 化工进展, 2021, 40(1): 31-38.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0500
膜样品 | 反渗透-正渗透法 | 正渗透法 | ||||||
---|---|---|---|---|---|---|---|---|
A/L·m-2·h-1·bar-1 | B/L·m-2·h-1 | S/μm | (A/B)/bar-1 | A/L·m-2·h-1·bar-1 | B/L·m-2·h-1 | S/μm | (A/B)/bar-1 | |
自制复合正渗透膜 | 1.50±0.18 | 0.10±0.01 | 370±20 | 15.27±0.6 | 1.35±0.23 | 0.23±0.03 | 374±40 | 5.98±1.06 |
Oasys复合正渗透膜 | 3.44±0.14 | 0.47±0.03 | 434±91 | 7.31±0.53 | 3.77±0.45 | 1.20±0.06 | 513±83 | 3.15±0.22 |
HTI三醋酸纤维正渗透膜 | 0.97±0.03 | 1.16±0.11 | 326±35 | 0.84±0.08 | 1.34±0.25 | 1.36±0.37 | 498±37 | 1.01±0.14 |
SW30反渗透膜 (除去PET无纺布层) | 2.39±0.09 | 0.23±0.01 | 1850±117 | 10.54±0.97 | 1.21±0.14 | 0.27±0.09 | 1560±57 | 4.77±0.96 |
膜样品 | 反渗透-正渗透法 | 正渗透法 | ||||||
---|---|---|---|---|---|---|---|---|
A/L·m-2·h-1·bar-1 | B/L·m-2·h-1 | S/μm | (A/B)/bar-1 | A/L·m-2·h-1·bar-1 | B/L·m-2·h-1 | S/μm | (A/B)/bar-1 | |
自制复合正渗透膜 | 1.50±0.18 | 0.10±0.01 | 370±20 | 15.27±0.6 | 1.35±0.23 | 0.23±0.03 | 374±40 | 5.98±1.06 |
Oasys复合正渗透膜 | 3.44±0.14 | 0.47±0.03 | 434±91 | 7.31±0.53 | 3.77±0.45 | 1.20±0.06 | 513±83 | 3.15±0.22 |
HTI三醋酸纤维正渗透膜 | 0.97±0.03 | 1.16±0.11 | 326±35 | 0.84±0.08 | 1.34±0.25 | 1.36±0.37 | 498±37 | 1.01±0.14 |
SW30反渗透膜 (除去PET无纺布层) | 2.39±0.09 | 0.23±0.01 | 1850±117 | 10.54±0.97 | 1.21±0.14 | 0.27±0.09 | 1560±57 | 4.77±0.96 |
1 | 王波, 文湘华, 申博, 等. 正渗透技术研究现状及进展[J]. 环境科学学报, 2016, 36(9): 3118-3126. |
WANG B, WEN X H, SHEN B, et al. Over view of research progress inforward osmosis technology[J]. Journal of Environmental Science, 2016, 36(9): 3118-3126. | |
2 | 许阳宇, 周律, 贾奇博, 等. 正渗透技术在污水资源化中的研究进展[J]. 化工环保, 2015, 35(2): 109-115. |
XU Y Y, ZHOU L, JA Q B, et al. Research progress of forward osmosis technology in wastewater resource utilization[J]. Environmental Protection of Chemical Industry, 2015, 35(2): 109-115. | |
3 | KIM S, CHU K H, AL-HAMADANI Y A J, et al. Removal of contaminants of emerging concern by membranes in water and wastewater: a review[J]. Chemical Engineering Journal, 2018, 335(1): 896-914. |
4 | QI S, LI Y, ZHAO Y, et al. Highly efficient forward osmosis based on porous membranes—Applications and implications[J]. Environmenral Science & Technology, 2015, 49(7): 4690-4695. |
5 | GUO H, YAO Z K, WANG J Q, et al. Polydopamine coating on a thin film composite forward osmosis membrane for enhanced mass transport and antifouling performance[J]. Journal of Membrane Science, 2018, 551(1): 234-242. |
6 | YAO Z K, PENG L E, GUO H, et al. Seawater pretreatment with an NF-like forward osmotic membrane: membrane preparation, characterization and performance comparison with RO-like membranes[J]. Desalination, 2019, 470(15): 1-7. |
7 | 方丽瑶, 吕慧, 付佳蓓, 等. 聚苯乙烯磺酸钠掺杂正渗透膜的制备及其性能[J]. 化工进展, 2019, 38(10): 4684-4692. |
FANG L Y, LÜ H, FU J B, et al. Preparation and characterization of sodium polystyrene sulfonateparticle doped FO membranes[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4684-4692. | |
8 | 胡念, 左浩然, 付佳蓓, 等. 石墨烯掺杂聚砜基正渗透膜的结构和性能[J]. 化工进展, 2017, 36(12): 4524-4532. |
HU N, ZUO H R, FU J B, et al. Structure and performance of forward osmosis membranes based onpolysulfone substrates incorporated with grapheme[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4524-4532. | |
9 | 龙婉晓, 王良芥, 李玉平, 等. 基于碳纳米管-聚丙烯腈纤维支撑层的正渗透膜制备[J]. 过程工程学报, 2017, 17(6): 1188-1194. |
LONG W X, WANG L J, LI Y P, et al. Fabrication of forward osmosis membranes with CNTs/PAN fibers supporting layer[J].The Chinese Journal of Process Engineering, 2017, 17(6): 1188-1194. | |
10 | 田浦, 王磊, 张慧慧, 等. 多壁碳纳米管改性正渗透膜及抗污染性能分析[J]. 水处理技术, 2017, 43(12): 66-69. |
TIAN P, WANG L, ZHANG H H, et al.Forward osmosis membranes modified by multi-walled carbonnanotubes and analysis of its antifouling property[J]. Technology of Water Treatment, 2017, 43(12): 66-69. | |
11 | MCCUTCHEON J R, ELIMELECH M. Modeling water flux in forward osmosis: implications for improved membrane design[J]. AlChE J., 2007, 53(7): 1736-1744. |
12 | CATH T Y, ELIMELECH M, MCCUTCHEON J R, et al. Standard methodology for evaluating membrane performance in osmotically driven membrane processes[J]. Desalination, 2012, 312(5): 31-38. |
13 | LONSDALE H K, MERTEN U, RILEY R L. Transport properties of cellulose acetate osmotic membranes[J]. Journal of Applied Polymer Science, 1965, 9(4): 1341-1362. |
14 | ZHAO S, ZOU L. Relating solution physicochemical properties to internal concentration polarization in forward osmosis[J]. Journal of Membrane Science, 2011, 379(1): 459-467. |
15 | TAN C H, NG H Y. Modified models to predict flux behavior in forward osmosis in consideration of external and internal concentration polarizations[J]. Journal of Membrane Science, 2008, 324(1): 209-219. |
16 | LEE K L, BAKER R W, LONSDALE H K. Membrane for power generation by pressure retarded osmosis[J]. Journal of Membrane Science, 1981, 8(2): 141-171. |
17 | MCCUTCHEON J R, ELIMELECH M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis[J]. Journal of Membrane Science, 2006, 284(1): 237-247. |
18 | GRAY G T, MCCUTCHEON J R, ELIMELECH M. Internal concentration polarization in forward osmosis: role of membrane orientation[J]. Desalination, 2006, 197(1/2/3): 1-8. |
19 | JUNG D H, LEE J, KIM D Y, et al. Simulation of forward osmosis membrane process: Effect of membrane orientation and flow direction of feed and draw solutions[J]. Desalination, 2011, 277(1): 83-91. |
20 | XU Y, PENG X, TANG C Y, et al. Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module[J]. Journal of Membrane Science, 2010, 348(1): 298-309. |
21 | GERSTANDT K, PEINEMANN K V, SKILHAGEN S E, et al. Membrane processes in energy supply for an osmotic power plant[J]. Desalination, 2008, 224(1): 64-70. |
22 | KUANG W, LIU Z, YU H, et al. Investigation of internal concentration polarization reduction in forward osmosis membrane using nano-CaCO3 particles as sacrificial component[J]. Journal of Membrane Science, 2016, 497(4): 485-493. |
23 | MANICKAM S S, MCCUTCHEON J R. Model thin film composite membranes for forward osmosis: demonstrating the inaccuracy of existing structural parameter models[J]. Journal of Membrane Science, 2015, 483(1): 70-74. |
24 | PHILLIP W A, YONG J S, ELIMELECH M. Reverse draw solute permeation in forward osmosis: modeling and experiments[J]. Environmental Science & Technology, 2010, 44(13): 5170-5176. |
25 | GEISE G M, PARK H B, SAGLE A C, et al. Water permeability and water/salt selectivity tradeoff in polymers for desalination[J]. Journal of Membrane Science, 2011, 369(1/2): 130-138. |
26 | LOEB S, TITELMAN L, KORNGOLD E, et al. Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane[J]. Journal of Membrane Science, 1997, 129(2): 243-249. |
27 | TIRAFERRI A, YIP N Y, STRAUB A P, et al. A method for the simultaneous determination of transport and structural parameters of forward osmosis membranes[J]. Journal of Membrane Science, 2013, 444(1): 523-538. |
28 | YIP N Y, TIRAFERRI A, PHILLIP W A, et al. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients[J]. Environmental Science & Technology, 2011, 45(10): 4360-4369. |
29 | KIM Y, LEE S, SHON H K, et al. Organic fouling mechanisms in forward osmosis membrane process under elevated feed and draw solution temperatures [J]. Desalination, 2015, 355(1): 169-177. |
30 | CODAY B D, HEIL D M, XU P, et al. Effects of transmembrane hydraulic pressure on performance of forward osmosis membranes[J]. Environmental Science & Technology, 2013, 47(5): 2386-2393. |
31 | ACHILLI A, CATH T Y, CHILDRESS A E. Power generation with pressure retarded osmosis: an experimental and theoretical investigation[J]. Journal of Membrane Science, 2009, 343(1-2): 42-52. |
32 | ZHANG S, WANG K Y, T-S CHUNG, et al. Well-constructed cellulose acetate membranes for forward osmosis: minimized internal concentration polarization with an ultra-thin selective layer[J]. Journal of Membrane Science, 2010, 360(1/2): 522-535. |
33 | PANSF, DONG Y, ZHENG YM, et al. Self-sustained hydrophilic nanofiber thin film composite forward osmosis membranes: Preparation, characterization and application for simulated antibiotic wastewater treatment[J]. Journal of Membrane Science, 2017, 523(1): 205-215. |
34 | WONG M C Y, MARTINEZ K, RAMON G Z, et al. Impacts of operating conditions and solution chemistry on osmotic membrane structure and performance[J]. Desalination, 2012, 287(15): 340-349. |
35 | KIM B, GWAK G, HONG S. Review on methodology for determining forward osmosis (FO) membrane characteristics: water permeability (A), solute permeability (B), and structural parameter (S)[J]. Desalination, 2017, 422(15): 5-16. |
36 | 边丽霞, 方彦彦, 王晓琳. 正渗透膜的非平衡热力学膜特征参数解析[J]. 膜科学与技术, 2016, 36(4): 75-83. |
BIAN L X, FANG Y Y, WANG X L. Under standing membrane parameters of aforward osmosis membrane based on none quilibrium therm odynamics[J]. Membrane Science and Technology, 2016, 36(4): 75-83. | |
37 | 王亚琴, 徐铜文, 王焕庭. 正渗透原理及分离传质过程浅析[J]. 化工学报, 2013, 64(1): 252-260. |
WANG Y Q, XU T W, WANG H T. Forward osmosis membrane process and its mass transport mechanisms[J]. CIESC Journal, 2013, 64(1): 252-260. | |
38 | VASSILIS GEKAS B H. Mass transfer in the membrane concentration polarization layer under turbulent cross flow : I. Critical literature review and adaptation of existing sherwood correlations to membrane operations[J]. Journal of Membrane Science, 1987, 30(2): 153-170. |
39 | QIN J-J, OO M H, KEKRE K A, et al. Experimental studies and modeling on concentration polarization in forward osmosis[J]. Water Science and Technology, 2010, 61(11): 2897-2904. |
40 | N-N BUI, ARENA J T, MCCUTCHEON J R. Proper accounting of mass transfer resistances in forward osmosis: improving the accuracy of model predictions of structural parameter [J]. Journal of Membrane Science, 2015, 492(15): 289-302. |
41 | SAGIV A, ZHU A, CHRISTOFIDES P D, et al. Analysis of forward osmosis desalination via two-dimensional FEM model[J]. Journal of Membrane Science, 2014, 464(15): 161-172. |
42 | TANG C Y, SHE Q, LAY W C L, et al. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration[J]. Journal of Membrane Science, 2010, 354(1): 123-133. |
43 | D'HAESE A K H, MOTSA M M, MEEREN P V D, et al. A refined draw solute flux model in forward osmosis: theoretical considerations and experimental validation[J]. Journal of Membrane Science, 2016, 522(15): 316-331. |
44 | LOEB S, TITELMAN L, KORNGOLD E, et al. Effect of porous support fabric on osmosis through a Loeb-Sourirajan type asymmetric membrane[J]. Journal of Membrane Science, 1997, 129(2): 243-249. |
45 | PARK M, LEE J J, LEE S, et al. Determination of a constant membrane structure parameter in forward osmosis processes[J]. Journal of Membrane Science, 2011, 375(1): 241-248. |
46 | SAGIV A, CHRISTOFIDES P D, COHEN Y, et al. On the analysis of FO mass transfer resistances via CFD analysis and film theory[J]. Journal of Membrane Science, 2015, 495(1): 198-205. |
47 | CHOWDHURY M R, MCCUTCHEON J R. Elucidating the impact of temperature gradients across membranes during forward osmosis: Coupling heat and mass transfer models for better prediction of real osmotic systems[J]. Journal of Membrane Science, 2018, 553(1): 189-199. |
[1] | LIU Xiang, HE Lin, CONG Haifeng, SUI Hong, LI Xingang. Enhancement and optimization of forward osmosis desalination process using diamine switchable solvent [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6158-6166. |
[2] | ZHU Tengyi, CAO Zaizhi. Application research progress of forward osmosis-membrane distillation coupling process in the treatment of highly difficult wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(11): 5894-5906. |
[3] | Yilian TANG, Shiyang LI, Zhijuan SUN, Congjie GAO, Lixin XUE. Non-woven composite forward osmosis membrane with three-dimensional polyamide desalination network structure [J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5170-5181. |
[4] | Liyao FANG,Hui LÜ,Jiabei FU,Haoran ZUO,Huiqing LIU,Guiping CAO. Preparation and characterization of sodium polystyrene sulfonate particle doped FO membranes [J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4684-4692. |
[5] | XIAO Qinqin, XU Shichang, WANG Yue, WANG Hongliu. Research and analysis on influencing factors of forward osmosis membrane fouling [J]. Chemical Industry and Engineering Progress, 2018, 37(01): 359-367. |
[6] | HU Nian, ZUO Haoran, FU Jiabei, LÜ Hui, TONG Yihao, LIU Huiqing, CAO Guiping. Structure and performance of forward osmosis membranes based on polysulfone substrates incorporated with graphene [J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4524-4532. |
[7] | GAO Tingting, XIE Lixin, XU Shichang, FENG Liyuan, DU Yawei, ZHOU Xiaokai. Study on seawater desalination by ammonium bicarbonate forward osmosis process [J]. Chemical Industry and Engineering Progress, 2017, 36(06): 2051-2056. |
[8] | CHEN Zisheng, ZHANG Tao, MAI Lijie, WU Jinhua, HU Chengsheng, WEI Chaohai. Analysis for numerical optimization on square fluidized bed with altering structural parameters and internals reinforcement [J]. Chemical Industry and Engineering Progress, 2017, 36(06): 1997-2009. |
[9] | XIE Peng, ZHANG Zhongguo, SUN Tao, WU Yue, WU Qiuyan, LI Jiding, LI Shan. Research progress of reverse draw solute permeation in forward osmosis process [J]. Chemical Industry and Engineering Progree, 2015, 34(10): 3540-3550. |
[10] | MA Yanhong1,DING Yun1,YANG Qing1,2,3,LI Peng1. Research progress of forward osmosis membrane materials [J]. Chemical Industry and Engineering Progree, 2014, 33(12): 3299-3303. |
[11] | XIE Lixin,XIN Jing,XIE Ao. Preparation and properties of cellulose triacetate forward osmosis membrane [J]. Chemical Industry and Engineering Progree, 2014, 33(10): 2700-2706. |
[12] | SHI Renli,YANG Qingfeng. Research advances in forward osmosis membrane separation [J]. Chemical Industry and Engineering Progree, 2011, 30(1): 66-. |
[13] | LI Gang 1,LI Xuemei 1,WANG Duo 2,HE Tao 1,GAO Congjie2. Forward osmosis membranes and applications [J]. Chemical Industry and Engineering Progree, 2010, 29(8): 1388-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |