Chemical Industry and Engineering Progress ›› 2020, Vol. 39 ›› Issue (2): 489-495.DOI: 10.16085/j.issn.1000-6613.2019-0704
• Energy processes and technology • Previous Articles Next Articles
Yunqi CAO1(),Xianli XIE1,Zhenqiang GUO1,Yanyan WANG1,Yunyun LIU1(),Aimin WU2,Yu ZHAO1
Received:
2019-05-04
Online:
2020-03-12
Published:
2020-02-05
Contact:
Yunyun LIU
曹运齐1(),解先利1,郭振强1,王严严1,刘云云1(),吴蔼民2,赵于1
通讯作者:
刘云云
作者简介:
曹运齐(1994—),男,硕士研究生,研究方向为生物质资源高效转化与利用技术开发。E-mail:基金资助:
CLC Number:
Yunqi CAO,Xianli XIE,Zhenqiang GUO,Yanyan WANG,Yunyun LIU,Aimin WU,Yu ZHAO. Research progress on lignocellulose pretreatment technology[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 489-495.
曹运齐,解先利,郭振强,王严严,刘云云,吴蔼民,赵于. 木质纤维素预处理技术研究进展[J]. 化工进展, 2020, 39(2): 489-495.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0704
预处理技术 | 作用机理 | 优点 | 缺点 |
---|---|---|---|
机械粉碎 | 破坏纤维素结晶结构,降低其结晶度 | 减小颗粒尺寸,降低结晶度,增加比表面积,提高基质浓度 | 能耗大,成本高 |
稀酸预处理 | 水解纤维素,除去半纤维素 | 提高半纤维素水解糖得率 | 腐蚀设备,有抑制物,酸须回收,成本高 |
碱预处理 | 破坏组分之间的结合键,分解部分半纤维素,降低纤维素聚合度和结晶度,脱除木质素 | 润胀纤维素,降低结晶度,提高酶解效率,室温下进行 | 存在试剂回收、中和、洗涤等问题 |
水热法 | 溶出半纤维素,去除部分木质素 | 增大纤维素与酶的接触面积,无需化学试剂,酶解效率高 | 水解产物复杂,还原糖得率不高,进料液固比较大 |
氨爆破 | 破坏纤维素结构,提高半纤维素降解率 | 破坏纤维素结晶结构,提高纤维素酶解可及性,抑制物少 | 氨回收能耗及成本高,难推广 |
蒸汽爆破 | 水解半纤维素,增大纤维素孔隙率 | 预处理时间短,能耗低,无污染,酶解效率高,应用较广泛 | 产生抑制性产物,洗涤导致多糖得率降低 |
生物法 | 除去木质素和部分半纤维素,提高纤维素酶解糖化率 | 作用条件温和,能耗低,无污染 | 效率低,预处理时间长,难以实现工业化生产 |
预处理技术 | 作用机理 | 优点 | 缺点 |
---|---|---|---|
机械粉碎 | 破坏纤维素结晶结构,降低其结晶度 | 减小颗粒尺寸,降低结晶度,增加比表面积,提高基质浓度 | 能耗大,成本高 |
稀酸预处理 | 水解纤维素,除去半纤维素 | 提高半纤维素水解糖得率 | 腐蚀设备,有抑制物,酸须回收,成本高 |
碱预处理 | 破坏组分之间的结合键,分解部分半纤维素,降低纤维素聚合度和结晶度,脱除木质素 | 润胀纤维素,降低结晶度,提高酶解效率,室温下进行 | 存在试剂回收、中和、洗涤等问题 |
水热法 | 溶出半纤维素,去除部分木质素 | 增大纤维素与酶的接触面积,无需化学试剂,酶解效率高 | 水解产物复杂,还原糖得率不高,进料液固比较大 |
氨爆破 | 破坏纤维素结构,提高半纤维素降解率 | 破坏纤维素结晶结构,提高纤维素酶解可及性,抑制物少 | 氨回收能耗及成本高,难推广 |
蒸汽爆破 | 水解半纤维素,增大纤维素孔隙率 | 预处理时间短,能耗低,无污染,酶解效率高,应用较广泛 | 产生抑制性产物,洗涤导致多糖得率降低 |
生物法 | 除去木质素和部分半纤维素,提高纤维素酶解糖化率 | 作用条件温和,能耗低,无污染 | 效率低,预处理时间长,难以实现工业化生产 |
DES | 纤维素溶解度/% | 半纤维素溶解度/% | 木质素溶解度/% |
---|---|---|---|
CU | 3.0 | 12.5 | 16.7 |
CO | 2.9 | 8.6 | 9.4 |
MP | 2.4 | 1.8 | 2.7 |
DES | 纤维素溶解度/% | 半纤维素溶解度/% | 木质素溶解度/% |
---|---|---|---|
CU | 3.0 | 12.5 | 16.7 |
CO | 2.9 | 8.6 | 9.4 |
MP | 2.4 | 1.8 | 2.7 |
预处理 | 残留物回收率/% | 残留物组分质量分数/% | 酶解残留物糖产率/% | ||||
---|---|---|---|---|---|---|---|
纤维素 | 半纤维素 | 木质素 | 葡萄糖 | 木糖 | |||
CU(12h) | 72.4 | 43.7 | 22.1 | 13.9 | 48.4 | 30.4 | |
MP(12h) | 73.9 | 45.0 | 22.3 | 15.7 | 47.4 | 22.8 | |
MP-CU(6h) | 60.5 | 54.6 | 18.1 | 10.8 | 52.6 | 20.1 | |
CU-MP(6h) | 65.3 | 49.8 | 21.4 | 14.3 | 47.7 | 24.8 | |
CO(4h) | 58.2 | 52.6 | 1.5 | 23.7 | 72.9 | 4.0 | |
CU(4h) | 74.1 | 43.2 | 24.5 | 15.0 | 47.5 | 28.0 | |
CO-CU(2h) | 54.9 | 60.7 | 2.8 | 17.8 | 89.8 | 7.3 | |
CU-CO(2h) | 52.1 | 63.5 | 3.8 | 24.2 | 71.7 | 7.5 | |
未处理样品 | 100 | 35.1 | 20.6 | 22.6 | 24.8 | 7.9 |
预处理 | 残留物回收率/% | 残留物组分质量分数/% | 酶解残留物糖产率/% | ||||
---|---|---|---|---|---|---|---|
纤维素 | 半纤维素 | 木质素 | 葡萄糖 | 木糖 | |||
CU(12h) | 72.4 | 43.7 | 22.1 | 13.9 | 48.4 | 30.4 | |
MP(12h) | 73.9 | 45.0 | 22.3 | 15.7 | 47.4 | 22.8 | |
MP-CU(6h) | 60.5 | 54.6 | 18.1 | 10.8 | 52.6 | 20.1 | |
CU-MP(6h) | 65.3 | 49.8 | 21.4 | 14.3 | 47.7 | 24.8 | |
CO(4h) | 58.2 | 52.6 | 1.5 | 23.7 | 72.9 | 4.0 | |
CU(4h) | 74.1 | 43.2 | 24.5 | 15.0 | 47.5 | 28.0 | |
CO-CU(2h) | 54.9 | 60.7 | 2.8 | 17.8 | 89.8 | 7.3 | |
CU-CO(2h) | 52.1 | 63.5 | 3.8 | 24.2 | 71.7 | 7.5 | |
未处理样品 | 100 | 35.1 | 20.6 | 22.6 | 24.8 | 7.9 |
FeCI3预处理条件 | 固体组分质量分数/% | |||||
---|---|---|---|---|---|---|
温度/℃ | 时间/min | 固体回收率/% | 葡聚糖 | 木聚糖 | 酸不溶性木质素 | |
130 | 30 | 64.7 | 47.7 | 2.7 | 36.2 | |
140 | 30 | 61.5 | 47.9 | 1.3 | 36.9 | |
150 | 30 | 58.8 | 48.5 | 0.4 | 39.5 | |
160 | 30 | 53.9 | 52.8 | 0.2 | 43.6 | |
170 | 30 | 47.6 | 41.5 | 0.0 | 54.8 | |
160 | 0 | 60.5 | 56.9 | 1.1 | 35.5 | |
160 | 10 | 57.0 | 59.4 | 0.4 | 37.9 | |
160 | 20 | 56.1 | 52.6 | 0.2 | 42.0 | |
160 | 30 | 53.9 | 52.8 | 0.2 | 43.6 | |
160 | 40 | 50.8 | 49.5 | 0.3 | 49.0 |
FeCI3预处理条件 | 固体组分质量分数/% | |||||
---|---|---|---|---|---|---|
温度/℃ | 时间/min | 固体回收率/% | 葡聚糖 | 木聚糖 | 酸不溶性木质素 | |
130 | 30 | 64.7 | 47.7 | 2.7 | 36.2 | |
140 | 30 | 61.5 | 47.9 | 1.3 | 36.9 | |
150 | 30 | 58.8 | 48.5 | 0.4 | 39.5 | |
160 | 30 | 53.9 | 52.8 | 0.2 | 43.6 | |
170 | 30 | 47.6 | 41.5 | 0.0 | 54.8 | |
160 | 0 | 60.5 | 56.9 | 1.1 | 35.5 | |
160 | 10 | 57.0 | 59.4 | 0.4 | 37.9 | |
160 | 20 | 56.1 | 52.6 | 0.2 | 42.0 | |
160 | 30 | 53.9 | 52.8 | 0.2 | 43.6 | |
160 | 40 | 50.8 | 49.5 | 0.3 | 49.0 |
1 | BEHERA S, ARORA R, NANDHAGOPAL N, et al. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass[J]. Renewable & Sustainable Energy Reviews, 2014, 36: 91-106. |
2 | PROCENTESE A, RAGANATI F, OLIVIERI G, et al. Renewable feedstocks for biobutanol production by fermentation[J]. New Biotechnology, 2016, 39: 135-140. |
3 | INGLE A P, CHANDEL A K, ANTUNES F A F, et al. New trends in application of nanotechnology for the pretreatment of lignocellulosic biomass[J]. Biofuels, Bioproducts and Biorefining, 2019, 13(3): 776-788. |
4 | 杨静, 邓佳, 史正军, 等. 木质纤维生物质的酶糖化技术[M]. 北京: 化学工业出版社, 2018: 1-4. |
YANG Jing, DENG Jia, SHI Zhengjun, et al. Enzymatic saccharification technology of lignocellulosic biomass[M]. Beijing: Chemical Industry Press, 2018: 1-4. | |
5 | SHAONI S, SHAOLONG S, XUEFEI C, et al. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials[J]. Bioresource Technology, 2016, 199: 49-58. |
6 | 姜岷, 曲音波, 鲍杰, 等. 非粮生物质炼制技术: 木质纤维素生物炼制原理与技术[M]. 北京: 化学工业出版社, 2018: 6-30. |
JIANG Min, QU Yinbo, BAO Jie, et al. Unedible biomass biorefinery technology: principle and technology of lignocellulose biorefinery processing[M]. Beijing: Chemical Industry Press, 2018: 6-30. | |
7 | ELGHARBAWY A A, ALAM M Z, MONIRUZZAMAN M, et al. Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass[J]. Biochemical Engineering, 2016, 109: 252-267. |
8 | ZHANG S, SUN J, ZHANG X, et al. Ionic liquid-based green processes for energy production[J]. Chemical Society Reviews, 2014, 43(22): 7838-7869. |
9 | HALDER P, KUNDU S, PPATEL S, et al. Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids[J]. Renewable and Sustainable Energy Reviews, 2019, 105: 268-292. |
10 | LI C, KNIERIM B, MANISSERI C, et al. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification[J]. Bioresource Technology, 2010, 101(13): 4900-4906. |
11 | HOU X F, WANG Z, SUN J, et al. A microwave-assisted aqueous ionic liquid pretreatment to enhance enzymatic hydrolysis of Eucalyptus and its mechanism[J]. Bioresource Technology, 2019, 272: 99-104. |
12 | ZHONG C, WANG C, HUANG F, et al. Wheat straw cellulose dissolution and isolation by tetra-n-butylammonium hydroxide[J]. Carbohydrate Polymers, 2013, 94(1): 38-45. |
13 | PARTHASARATHI R, SUN J, DUTTA T, et al. Activation of lignocellulosic biomass for higher sugar yields using aqueous ionic liquid at low severity process conditions[J]. Biotechnology for Biofuels, 2016, 9(1): 160. |
14 | DUAN D, RUAN R, LEI H, et al. Microwave-assisted co-pyrolysis of pretreated lignin and soapstock for upgrading liquid oil: effect of pretreatment parameters on pyrolysis behavior[J]. Bioresource Technology, 2018, 258: 98-104. |
15 | HA S H, MAI N L, AN G, et al. Microwave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis[J]. Bioresource Technology, 2011, 102(2): 1214-1219. |
16 | XU J, LIU B, HOU H, et al. Pretreatment of eucalyptus with recycled ionic liquids for low-cost biorefinery[J]. Bioresource Technology, 2017, 234: 406-414. |
17 | KURODA K, INOUE K, MIYAMURA K, et al. Enhanced hydrolysis of lignocellulosic biomass assisted by a combination of acidic ionic liquids and microwave heating[J]. Chemical Engineering of Japan, 2016, 49(8): 809-813. |
18 | CHEN Y, MU T C. Application of deep eutectic solvents in biomass pretreatment and conversion[J]. Green Energy Environment, 2019, 4(2): 95-115. |
19 | WANG B, QIN L, MU T, et al. Are ionic liquids chemically stable?[J]. Chemical Reviews, 2017, 117(10): 7113-7131. |
20 | 亓伟, 王闻, 王琼, 等. 木质纤维素预处理技术及其机理研究进展[J]. 新能源进展, 2013(2): 150-158. |
QI Wei, WANG Wen, WANG Qiong, et al. Review on the pretreatment method and mechanism of lignocellulose[J]. Advances in New and Renewable Energy, 2013(2): 150-158. | |
21 | 张成武. 低共熔溶剂预处理木质纤维素的研究[D]. 天津: 天津大学, 2016. |
ZHANG Chengwu. Study on the pretreatment of lignocellulose by deep eutectic solvents[D]. Tianjin: Tianjin University, 2016. | |
22 | 刘钧, 王菊, 岳莺莺, 等. 深度共熔溶剂对尾叶桉木质素的溶解选择性[J]. 精细化工, 2016, 33(11): 1287-1294. |
LIU Jun, WANG Ju, YUE Yingying, et al. Solubility selectivity for lignin of eucalyptus in deep eutectic solvents[J]. Fine Chemicals, 2016, 33(11): 1287-1294. | |
23 | FLORINDO C, ROMERO L, RINTOUL I, et al. From phase change materials to green solvents: hydrophobic low viscous fatty acid-based deep eutectic solvents[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 3888-3895. |
24 | ZHANG C W, XIA S Q, MA P S. Facile pretreatment of lignocellulosic biomass using deep eutectic solvents[J]. Bioresource Technology, 2016, 219: 1-5. |
25 | XU G C, DING J C, HAN R Z, et al. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation[J]. Bioresource Technology, 2016, 203: 364-369. |
26 | PROCENTESE A, JOHNSON E, ORR V, et al. Deep eutectic solvent pretreatment and subsequent saccharification of corncob[J]. Bioresource Technology, 2015, 192: 31-36. |
27 | HOU X D, FENG G J, YE M, et al. Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment[J]. Bioresource Technology, 2017, 238: 139-146. |
28 | WEI W, MENG F, CUI Y, et al. Room temperature dissolution of cellulose in tetra-butylammonium hydroxide aqueous solvent through adjustment of solvent amphiphilicity[J]. Cellulose, 2017, 24(1): 49-59. |
29 | YIIN C L, QUITAIN A T, YUSUP S, et al. Characterization of natural low transition temperature mixtures (LTTMs): green solvents for biomass delignification[J]. Bioresource Technology, 2016, 199: 258-264. |
30 | HOU X D, LI A L, LIN K P, et al. Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment[J]. Bioresource Technology, 2018, 249: 261-267. |
31 | KUMAR A K, PARIKH B S, PRAVAKAR M. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue[J]. Environmental Science and Pollution Research, 2016, 23(10): 9265-9275. |
32 | NINOMIYA K, OMOTE S, OGINO C, et al. Saccharification and ethanol fermentation from cholinium ionic liquid-pretreated bagasse with a different number of post-pretreatment washings[J]. Bioresource Technology, 2015, 189: 203-209. |
33 | ZHANG H D, YE G, WEI Y, et al. Enhanced enzymatic hydrolysis of sugarcane bagasse with ferric chloride pretreatment and surfactant[J]. Bioresource Technology, 2017, 229: 96-103. |
34 | 胡金峰, 陈理恒, 李兵云, 等. 氯化铁预处理蔗渣及其对后续酶解的影响研究[J]. 造纸科学与技术, 2012, 31(6): 104-109. |
HU Jinfeng, CHEN Liheng, LI Bingyun, et al. Study on the FeCl3 pretreatment of bagasse for enzymatic hydrolysis[J]. Paper Science & Technology, 2012, 31(6): 104-109. | |
35 | LIU L, SUN J, LI M, et al. Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment[J]. Bioresource Technology, 2009, 100(23): 5853-5858. |
36 | CHEN L, CHEN R, FU S. FeCl3 pretreatment of three lignocellulosic biomass for ethanol production[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(8): 1794-1800. |
37 | ZHANG Z, IAN M, HARA O, et al. Pretreatment of sugarcane bagasse by acid-catalysed process in aqueous ionic liquid solutions[J]. Bioresource Technology, 2012, 120: 149-156. |
38 | GAO J, CHEN L, ZHANG J, et al. Improved enzymatic hydrolysis of lignocellulosic biomass through pretreatment with plasma electrolysis[J]. Bioresource Technology, 2014, 171: 469-471. |
39 | TANG S, XU C, VU L T K, et al. Enhanced enzymatic hydrolysis of pennisetum alopecuroides by dilute acid, alkaline and ferric chloride pretreatments[J]. Molecules, 2019, 24(9): 1715. |
40 | SUN S, CHEN W, TANG J, et al. Synergetic effect of dilute acid and alkali treatments on fractional application of rice straw[J]. Biotechnology for Biofuels, 2016, 9(1): 217. |
41 | BIAN H, WU X, LUO J, et al. Valorization of alkaline peroxide mechanical pulp by metal chloride-assisted hydrotropic pretreatment for enzymatic saccharification and cellulose nanofibrillation[J]. Polymers, 2019, 11(2): 331. |
42 | HASSAN S S, WILLIAMS G A, JAISWAL A K. Emerging technologies for the pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2018, 262: 310-318. |
43 | KANG K E, JEONG J S, KIM Y, et al. Development and economic analysis of bioethanol production facilities using lignocellulosic biomass[J]. Journal of Bioscience and Bioengineering, 2019, 128(4): 475-479. |
[1] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[2] | ZHANG Lele, QIAN Yundong, ZHU Huatong, FENG Silong, YANG Xiuna, YU Ying, YANG Qiang, LU Hao. Study on optimization limits of dehydration and desalination pretreatment of hydrogenated coal tar [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2298-2305. |
[3] | HUANG Yuefeng, MA Lisha, ZHANG Lili, WANG Zhiguo. Research progress on functional application of lignocellulose composite biomass film materials [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4840-4854. |
[4] | HAN Mingyang, QIAO Hui, FU Jiaming, MA Zewen, WANG Yan, OUYANG Jia. Research progress of non-aqueous solvents on the pretreatment of lignocellulose [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4086-4097. |
[5] | XIE Xianli, LIU Yunyun, YU Qiang, ZHANG Yu, ZHANG Rongqing, QIU Yuxin. Improving enzymatic hydrolysis effect of herb residue by deep eutectic solvent pretreatment [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1349-1356. |
[6] | RUAN Min, SUN Yutong, HUANG Zhongliang, LI Hui, ZHANG Xuan, WU Xikai, ZHAO Cheng, YAO Shirong, ZHANG Shuanbao, ZHANG Wei, HUANG Jing. Energy economy evaluation of sludge pretreatment-anaerobic digestion system [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1503-1516. |
[7] | WANG Na, SONG Xiulan, ZAN Botao. Synthesis of PHA by mixed microorganisms using simulative hydrolysate liquid from the excess sludge by APG combined with FNA pretreatment [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1017-1024. |
[8] | WANG Yilin, LI Shijie. Effect of hydrochloric acid pretreatment on the electrochemical properties of enteromorpha-based activated carbon [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6454-6460. |
[9] | LIU Qianjing, CHEN Xiaomiao, WANG Zhi, SHI Jiping, LI Baoguo, LIU Li. Deep eutectic solvent pretreatment of poplar hydrolysis residue for lignin separation [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5612-5618. |
[10] | ZHANG Qiang, CHEN Shiyang. Effect of oxygen-assisted hydrothermal pretreatment on fermentation of corn stover to ethanol [J]. Chemical Industry and Engineering Progress, 2022, 41(1): 161-165. |
[11] | NIE Yudong, LI Jin, ZHANG Xianming. Research progress on membrane fouling and its pretreatment technology in water treatment [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2278-2289. |
[12] | DONG Yanmei, AN Yanxia, MA Yangyang, ZHANG Jian, LI Mengqin. Research progress on deep eutectic solvent of lignocellulose pretreatment [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1594-1603. |
[13] | Jinxue WANG, Liming SHAO, Fan LYU, Hua ZHANG, Pinjing HE. Monitoring and analysis methods for malodor generated during the collection, transportation, treatment and disposal of domestic waste [J]. Chemical Industry and Engineering Progress, 2021, 40(2): 1058-1068. |
[14] | Tingting WANG, Zhiqiang ZHAO, Yaobin ZHANG. Enhancement of anaerobic digestion of oily sludge by alkali pretreatment coupled with zero-valent iron [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 534-541. |
[15] | Li ZHANG, Zonglu YAO, Lixin ZHAO, Zhihe LI, Weiming YI, Peng FU, Chao YUAN. Research progress on preparation of high quality bio-oil by pyrolysis of biomass [J]. Chemical Industry and Engineering Progress, 2021, 40(1): 139-150. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |