1 | FITCHETT D E, TARBELL J M. Effect of mixing on the precipitation of barium sulfate in an MSMPR reactorssss[J]. AIChE Journal, 1990, 36(4): 511-522. | 2 | CHARMOLUE H, ROUSSEAU R W. L-serine obtained by methanol addition in batch crystallization[J]. AIChE Journal, 1991, 37(8): 1121-1128. | 3 | PHILLIPS R, ROHANI S, BALDYGA J. Micromixing in a single-feed semi-batch precipitation process[J]. AIChE Journal, 1999, 45(1): 82-92. | 4 | TORBACKE M, RASMUSON ? C. Mesomixing in semi-batch reaction crystallization and influence of reactor size[J]. AIChE Journal, 2004, 50(12): 3107-3119. | 5 | RAMISETTY K A, PANDIT A B, GOGATE P R. Ultrasound-assisted antisolvent crystallization of benzoic acid: Effect of process variables supported by theoretical simulations[J]. Industrial & Engineering Chemistry Research, 2013, 52(49): 17573-17582. | 6 | GRADOV D V, GONZáLEZ G, VAUHKONEN M, et al. Experimental investigation of reagent feeding point location in a semi-batch precipitation process[J]. Chemical Engineering Science, 2018, 190: 361-369. | 7 | DAVID R, MARCANT B. Prediction of micromixing effects in precipitation: Case of double-jet precipitators[J]. AIChE Journal, 1994, 40(3): 424-432. | 8 | HOUCINE I, PLASARI E, DAVID R, et al. Influence of mixing characteristics on the quality and size of precipitated calcium oxalate in a pilot scale reactor[J]. Chemical Engineering Research and Design, 1997, 75(2): 252-256. | 9 | QU H Y, ALATALO H, HATAKKA H, et al. Raman and ATR FTIR spectroscopy in reactive crystallization: Simultaneous monitoring of solute concentration and polymorphic state of the crystals[J]. Journal of Crystal Growth, 2009, 311(13): 3466-3475. | 10 | E W W, CHENG J C, YANG C, et al. Experimental study by online measurement of the precipitation of nickel hydroxide: Effects of operating conditions[J]. Chinese Journal of Chemical Engineering, 2015, 23(5): 860-867. | 11 | REHAGE H, NIKQ F, KIND M. Experimental investigation of a two-zone model for semi-batch precipitation in stirred-tank reactors[J]. Chemical Engineering Science, 2019, 207: 258-270. | 12 | MUHR H, DAVID R, VILLERMAUX J, et al. Crystallization and precipitation engineering—Ⅴ. Simulation of the precipitation of silver bromide octahedral crystals in a double-jet semi-batch reactor[J]. Chemical Engineering Science, 1995, 50(2): 345-355. | 13 | ZAUNER R, JONES A G. Scale-up of continuous and semibatch precipitation processes[J]. Industrial & Engineering Chemistry Research, 2000, 39(7): 2392-2403. | 14 | YU Z Q, TAN R B H, CHOW P S. Effects of operating conditions on agglomeration and habit of paracetamol crystals in anti-solvent crystallization[J]. Journal of Crystal Growth, 2005, 279(3): 477-488. | 15 | HAN B, QU H Y, NIEMI H, et al. Mechanistic study of magnesium carbonate semibatch reactive crystallization with magnesium hydroxide and CO2[J]. Industrial & Engineering Chemistry Research, 2014, 53(30): 12077-12082. | 16 | CHEN J F, ZHENG C, CHEN G T. Interaction of macro- and micromixing on particle size distribution in reactive precipitation[J]. Chemical Engineering Science, 1996, 51(10): 1957-1966. | 17 | UEHARA-NAGAMINE E, ARMENANTE P M. Effect of process variables on the single-feed semibatch precipitation of barium sulphate[J]. Chemical Engineering Research and Design, 2001, 79(8): 979-988. | 18 | STANLEY S J. Tomographic imaging during reactive precipitation in a stirred vessel: mixing with chemical reaction[J]. Chemical Engineering Science, 2006, 61(24): 7850-7863. | 19 | MAHAJAN A J, KIRWAN D J. Micromixing effects in a two-impinging-jets precipitator[J]. AIChE Journal, 1996, 42(7): 1801-1814. | 20 | JOHNSON B K, PRUD'HOMME R K. Chemical processing and micromixing in confined impinging jets[J]. AIChE Journal, 2003, 49(9): 2264-2282. | 21 | MARCHISIO D L, RIVAUTELLA L, BARRESI A A. Design and scale-up of chemical reactors for nanoparticle precipitation[J]. AIChE Journal, 2006, 52(5): 1877-1887. | 22 | WOO X Y, TAN R B H, BRAATZ R D. Modeling and computational fluid dynamics-population balance equation-micromixing simulation of impinging jet crystallizers[J]. Crystal Growth & Design, 2009, 9(1): 156-164. | 23 | ALI H S M, YORK P, BLAGDEN N. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors[J]. International Journal of Pharmaceutics, 2009, 375(1): 107-113. | 24 | LINDENBERG C, MAZZOTTI M. Continuous precipitation of L-asparagine monohydrate in a micromixer: estimation of nucleation and growth kinetics[J]. AIChE Journal, 2011, 57(4): 942-950. | 25 | JIANG M, LI Y-E D, H-H TUNG, et al. Effect of jet velocity on crystal size distribution from antisolvent and cooling crystallizations in a dual impinging jet mixer[J]. Chemical Engineering and Processing: Process Intensification, 2015, 97: 242-247. | 26 | METZGER L, KIND M. On the transient flow characteristics in confined impinging jet mixers-CFD simulation and experimental validation[J]. Chemical Engineering Science, 2015, 133: 91-105. | 27 | BLANDIN A F, MANGIN D, NALLET V, et al. Kinetics identification of salicylic acid precipitation through experiments in a batch stirred vessel and a T-mixer[J]. Chemical Engineering Journal, 2001, 81(1): 91-100. | 28 | H-C SCHWARZER, PEUKERT W. Combined experimental/numerical study on the precipitation of nanoparticles[J]. AIChE Journal, 2004, 50(12): 3234-3247. | 29 | GRADL J, H-C SCHWARZER, SCHWERTFIRM F, et al. Precipitation of nanoparticles in a T-mixer: coupling the particle population dynamics with hydrodynamics through direct numerical simulation[J]. Chemical Engineering and Processing: Process Intensification, 2006, 45(10): 908-916. | 30 | LINDENBERG C, SCH?LL J, VICUM L, et al. Experimental characterization and multi-scale modeling of mixing in static mixers[J]. Chemical Engineering Science, 2008, 63(16): 4135-4149. | 31 | LIU Y, CHENG C, LIU Y, et al. Mixing in a multi-inlet vortex mixer (MIVM) for flash nano-precipitation[J]. Chemical Engineering Science, 2008, 63(11): 2829-2842. | 32 | LINDENBERG C, MAZZOTTI M. Experimental characterization and multi-scale modeling of mixing in static mixers. Part 2. Effect of viscosity and scale-up[J]. Chemical Engineering Science, 2009, 64(20): 4286-4294. | 33 | FERGUSON S, MORRIS G, HAO H, et al. In-situ monitoring and characterization of plug flow crystallizers[J]. Chemical Engineering Science, 2012, 77: 105-111. | 34 | PIRKLE C, FOGUTH L C, BRENEK S J, et al. Computational fluid dynamics modeling of mixing effects for crystallization in coaxial nozzles[J]. Chemical Engineering and Processing: Process Intensification, 2015, 97: 213-232. | 35 | FARIAS L F I, DE SOUZA J A, BRAATZ R D, et al. Coupling of the population balance equation into a two-phase model for the simulation of combined cooling and antisolvent crystallization using OpenFOAM[J]. Computers & Chemical Engineering, 2019, 123: 246-256. | 36 | ROSA C A DA, BRAATZ R D. Multiscale modeling and simulation of macromixing, micromixing, and crystal size distribution in radial mixers/crystallizers[J]. Industrial & Engineering Chemistry Research, 2018, 57(15): 5433-5441. | 37 | WU B, FANG Y, ZHAO C, et al. Experimental study and numerical simulation of barium sulfate precipitation process in a continuous multi-orifice-impinging transverse jet reactor[J]. Powder Technology, 2017, 321: 180-189. | 38 | WU B, LI J, LI C, et al. Antisolvent crystallization intensified by a jet crystallizer and a method for investigating crystallization kinetics[J]. Chemical Engineering Science, 2020, 211: 115259. | 39 | LóPEZ-GUAJARDO E, ORTIZ-NADAL E, MONTESINOS-CASTELLANOS A, et al. Coiled flow inverter as a novel alternative for the intensification of a liquid-liquid reaction[J]. Chemical Engineering Science, 2017, 169: 179-185. | 40 | BENITEZ-CHAPA A G, NIGAM K D P, ALVAREZ A J. Process intensification of continuous antisolvent crystallization using a coiled flow inverter[J]. Industrial & Engineering Chemistry Research, 2020, 59(9): 3934-3942. | 41 | YANG H-J, CHU G-W, ZHANG J-W, et al. Micromixing efficiency in a rotating packed bed:?experiments and simulation[J]. Industrial & Engineering Chemistry Research, 2005, 44(20): 7730-7737. | 42 | ZHONG J, SHEN Z, YANG Y, et al. Preparation and characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment[J]. International Journal of Pharmaceutics, 2005, 301(1): 286-293. | 43 | CHIOU H, LI L, HU T, et al. Production of salbutamol sulfate for inhalation by high-gravity controlled antisolvent precipitation[J]. International Journal of Pharmaceutics, 2007, 331(1): 93-98. | 44 | HU T, CHIOU H, H-K CHAN, et al. Preparation of inhalable salbutamol sulphate using reactive high gravity controlled precipitation[J]. Journal of Pharmaceutical Sciences, 2008, 97(2): 944-949. | 45 | ZHAO H, WANG J, ZHANG H, et al. Facile preparation of danazol nanoparticles by high-gravity anti-solvent precipitation (HGAP) method[J]. Chinese Journal of Chemical Engineering, 2009, 17(2): 318-323. | 46 | DOUROUMIS D, SCHELER S, FAHR A. Using a modified shepards method for optimization of a nanoparticulate cyclosporine a formulation prepared by a static mixer technique[J]. Journal of Pharmaceutical Sciences, 2008, 97(2): 919-930. | 47 | ALVAREZ A J, MYERSON A S. Continuous plug flow crystallization of pharmaceutical compounds[J]. Crystal Growth & Design, 2010, 10(5): 2219-2228. | 48 | BROWN C J, NI X-W. Evaluation of growth kinetics of antisolvent crystallization of paracetamol in an oscillatory baffled crystallizer utilizing video imaging[J]. Crystal Growth & Design, 2011, 11(9): 3994-4000. | 49 | BROWN C J, ADELAKUN J A, NI X-W. Characterization and modelling of antisolvent crystallization of salicylic acid in a continuous oscillatory baffled crystallizer[J]. Chemical Engineering and Processing: Process Intensification, 2015, 97: 180-186. | 50 | MCGLONE T, BRIGGS N E B, CLARK C A, et al. Oscillatory flow reactors (OFRs) for continuous manufacturing and crystallization[J]. Organic Process Research & Development, 2015, 19(9): 1186-1202. | 51 | JOLLIFFE H G, GEROGIORGIS D I. Process modelling, design and technoeconomic evaluation for continuous paracetamol crystallisation[J]. Computers & Chemical Engineering, 2018, 118: 224-235. | 52 | JIANG M, NI X-W. Reactive crystallization of paracetamol in a continuous oscillatory baffled reactor[J]. Organic Process Research & Development, 2019, 23(5): 882-890. | 53 | WANG Q-A, WANG J-X, LI M, et al. Large-scale preparation of barium sulphate nanoparticles in a high-throughput tube-in-tube microchannel reactor[J]. Chemical Engineering Journal, 2009, 149(1): 473-478. | 54 | CHEN J-F, CHEN G-Z, WANG J-X, et al. High-throughput microporous tube-in-tube microreactor as novel gas-liquid contactor: mass transfer study[J]. AIChE Journal, 2011, 57(1): 239-249. | 55 | LIANG Y, CHU G, WANG J, et al. Controllable preparation of nano-CaCO3 in a microporous tube-in-tube microchannel reactor[J]. Chemical Engineering and Processing: Process Intensification, 2014, 79: 34-39. | 56 | LIU W J, MA C Y, LIU J J, et al. Analytical technology aided optimization and scale-up of impinging jet mixer for reactive crystallization process[J]. AIChE Journal, 2015, 61(2): 503-517. | 57 | LIU W J, MA C Y, LIU J J, et al. Continuous reactive crystallization of pharmaceuticals using impinging jet mixers[J]. AIChE Journal, 2017, 63(3): 967-974. | 58 | BECK C, DALVI S V, DAVE R N. Controlled liquid antisolvent precipitation using a rapid mixing device[J]. Chemical Engineering Science, 2010, 65(21): 5669-5675. | 59 | POHL B, JAMSHIDI R, BRENNER G, et al. Experimental study of continuous ultrasonic reactors for mixing and precipitation of nanoparticles[J]. Chemical Engineering Science, 2012, 69(1): 365-372. | 60 | GUO Z, ZHANG M, LI H, et al. Effect of ultrasound on anti-solvent crystallization process[J]. Journal of Crystal Growth, 2005, 273(3): 555-563. | 61 | GUO Z, JONES A G, LI N. The effect of ultrasound on the homogeneous nucleation of BaSO4 during reactive crystallization[J]. Chemical Engineering Science, 2006, 61(5): 1617-1626. | 62 | GUO Z, JONES A G, HAO H, et al. Effect of ultrasound on the heterogeneous nucleation of BaSO4 during reactive crystallization[J]. Journal of Applied Physics, 2007, 101(5): 054907. | 63 | VERA H U R, BAILLON F, ESPITALIER F, et al. Crystallization of α-glycine by anti-solvent assisted by ultrasound[J]. Ultrasonics Sonochemistry, 2019, 58: 104671. | 64 | HATKAR U N, GOGATE P R. Process intensification of anti-solvent crystallization of salicylic acid using ultrasonic irradiations[J]. Chemical Engineering and Processing: Process Intensification, 2012, 57/58: 16-24. | 65 | NII S, TAKAYANAGI S. Growth and size control in anti-solvent crystallization of glycine with high frequency ultrasound[J]. Ultrasonics Sonochemistry, 2014, 21(3): 1182-1186. | 66 | 杭方学, 丘泰球. 超声对穿心莲内酯溶析结晶的影响[J]. 高校化学工程学报, 2008, 22 (4): 585-590. | 66 | HANG F X, QIU T Q. Effect of ultrasound on andrographolide solventing-out crystallization process[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(4): 585-590. | 67 | 刘玉强, 张志强, 毕秋艳, 等. 超声波对碳酸锂反应结晶过程的影响[J]. 无机盐工业, 2019, 51(4): 42-47. | 67 | LIU Y Q, ZHANG Z Q, BI Q Y, et al. Influence of ultrasonic on reaction crystallization process of lithium carbonate[J]. Inorganic Chemicals Industry, 2019, 51(4): 42-47. | 68 | BHANGU S K, ASHOKKUMAR M, LEE J. Ultrasound assisted crystallization of paracetamol: crystal size distribution and polymorph control[J]. Crystal Growth & Design, 2016, 16(4): 1934-1941. | 69 | THORAT A A, DALVI S V. Ultrasound-assisted modulation of concomitant polymorphism of curcumin during liquid antisolvent precipitation[J]. Ultrasonics Sonochemistry, 2016, 30: 35-43. | 70 | KüGLER R T, KIND M. Experimental study about plugging in confined impinging jet mixers during the precipitation of strontium sulfate[J]. Chemical Engineering and Processing: Process Intensification, 2016, 101: 25-32. | 71 | MADSEN H E L. Influence of magnetic field on the precipitation of some inorganic salts[J]. Journal of Crystal Growth, 1995, 152(1): 94-100. | 72 | 罗志强, 杨庆峰. 旋转磁场与水量耦合对CaCO3结晶的影响[J]. 化工学报, 2018, 69(7): 3029-3037. | 72 | LUO Z Q, YANG Q F. Effect of rotating magnetic field coupled with water volume on CaCO3 crystallization[J]. CIESC Journal, 2018, 69(7): 3029-3037. | 73 | COSTA Z S, MENESES C T, CASTRO B, et al. Influence of magnetic field on barium sulfate incrustation from aqueous solutions[J]. Heliyon, 2019, 5(7): e02032. | 74 | TAI C Y, WU C-K, CHANG M-C. Effects of magnetic field on the crystallization of CaCO3 using permanent magnets[J]. Chemical Engineering Science, 2008, 63(23): 5606-5612. | 75 | CHANG M-C, TAI C Y. Effect of the magnetic field on the growth rate of aragonite and the precipitation of CaCO3[J]. Chemical Engineering Journal, 2010, 164(1): 1-9. | 76 | ZARKADAS D M, SIRKAR K K. Antisolvent crystallization in porous hollow fiber devices[J]. Chemical Engineering Science, 2006, 61(15): 5030-5048. | 77 | DRIOLI E, STANKIEWICZ A I, MACEDONIO F. Membrane engineering in process intensification: an overview[J]. Journal of Membrane Science, 2011, 380(1): 1-8. | 78 | KIEFFER R, MANGIN D, PUEL F, et al. Precipitation of barium sulphate in a hollow fiber membrane contactor. Part Ⅰ: Investigation of particulate fouling[J]. Chemical Engineering Science, 2009, 64(8): 1759-1767. | 79 | KIEFFER R, MANGIN D, PUEL F, et al. Precipitation of barium sulphate in a hollow fiber membrane contactor. Part Ⅱ: The influence of process parameters[J]. Chemical Engineering Science, 2009, 64(8): 1885-1891. | 80 | OTHMAN R, VLADISAVLJEVI? G T, SIMONE E, et al. Preparation of microcrystals of piroxicam monohydrate by antisolvent precipitation via microfabricated metallic membranes with ordered pore arrays[J]. Crystal Growth & Design, 2017, 17(12): 6692-6702. | 81 | FERN J C W, OHSAKI S, WATANO S, et al. Continuous synthesis of nano-drug particles by antisolvent crystallization using a porous hollow-fiber membrane module[J]. International Journal of Pharmaceutics, 2018, 543(1): 139-150. | 82 | 盛磊, 脱凌晗, 姜晓滨, 等. 有机膜精确调控传质的新型溶析结晶及过程强化[J]. 化工进展, 2020, 39(5): 1692-1700. | 82 | SHENG L, TUO L H, JIANG X B, et al. Novel antisolvent crystallization and process intensification via the accurate mass transfer control of the organic membrane[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1692-1700. | 83 | LI J, SHENG L, TUO L, et al. Membrane-assisted antisolvent crystallization: interfacial mass-transfer simulation and multistage process control[J]. Industrial & Engineering Chemistry Research, 2020, 59(21): 10160-10171. | 84 | OMAR H M, ROHANI S. Crystal population balance formulation and solution methods: a review[J]. Crystal Growth & Design, 2017, 17(7): 4028-4041. | 85 | 李希,陈建峰,陈甘棠. 微观混和研究的现状[J]. 化学反应工程与工艺, 1994, 10(2): 103-112. | 85 | LI X, CHEN J F, CHEN G T. Micromixing—The state of the art[J]. Chemical Reaction Engineering and Technology, 1994, 10(2): 103-112. | 86 | BALDYGA J, BOURNE J R. A fluid mechanical approach to turbulent mixing and chemical reaction. Part II. Micromixing in the light of turbulence theory[J]. Chemical Engineering Communications, 1984, 28(4/5/6): 243-258. | 87 | BALDYGA J, BOURNE J R. Simplification of micromixing calculations. Ⅰ. Derivation and application of new model[J]. The Chemical Engineering Journal, 1989, 42(2): 83-92. | 88 | BALDYGA J, BOURNE J R, HEARN S J. Interaction between chemical reactions and mixing on various scales[J]. Chemical Engineering Science, 1997, 52(4): 457-466. | 89 | FALK L, SCHAER E. A PDF modelling of precipitation reactors[J]. Chemical Engineering Science, 2001, 56(7): 2445-2457. | 90 | VICUM L, OTTIGER S, MAZZOTTI M, et al. Multi-scale modeling of a reactive mixing process in a semibatch stirred tank[J]. Chemical Engineering Science, 2004, 59(8): 1767-1781. | 91 | WANG L G, FOX R O. Comparison of micromixing models for CFD simulation of nanoparticle formation[J]. AIChE Journal, 2004, 50(9): 2217-2232. | 92 | ?NCüL A A, JANIGA G, THéVENIN D. Comparison of various micromixing approaches for computational fluid dynamics simulation of barium sulfate precipitation in tubular reactors[J]. Industrial & Engineering Chemistry Research, 2009, 48(2): 999-1007. | 93 | MARCHISIO D L, FOX R O, BARRESI A A, et al. On the simulation of turbulent precipitation in a tubular reactor via computational fluid dynamics (CFD)[J]. Chemical Engineering Research and Design, 2001, 79(8): 998-1004. | 94 | MARCHISIO D L, BARRESI A A, GARBERO M. Nucleation, growth, and agglomeration in barium sulfate turbulent precipitation[J]. AIChE Journal, 2002, 48(9): 2039-2050. | 95 | MAKOWSKI L, ORCIUCH W, BALDYGA J. Large eddy simulations of mixing effects on the course of precipitation process[J]. Chemical Engineering Science, 2012, 77: 85-94. | 96 | ST?HL M, RASMUSON ? C. Towards predictive simulation of single feed semibatch reaction crystallization[J]. Chemical Engineering Science, 2009, 64(7): 1559-1576. | 97 | BALDYGA J, PODGóRSKA W, POHORECKI R. Mixing-precipitation model with application to double feed semibatch precipitation[J]. Chemical Engineering Science, 1995, 50(8): 1281-1300. | 98 | WEI H, ZHOU W, GARSIDE J. Computational fluid dynamics modeling of the precipitation process in a semibatch crystallizer[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5255-5261. | 99 | VICUM L, MAZZOTTI M. Multi-scale modeling of a mixing-precipitation process in a semibatch stirred tank[J]. Chemical Engineering Science, 2007, 62(13): 3513-3527. | 100 | CHENG J C, YANG C, MAO Z-S, et al. CFD modeling of nucleation, growth, aggregation, and breakage in continuous precipitation of barium sulfate in a stirred tank[J]. Industrial & Engineering Chemistry Research, 2009, 48(15): 6992-7003. | 101 | ZHANG Q H, MAO Z-S, YANG C, et al. Numerical simulation of barium sulfate precipitation process in a continuous stirred tank with multiple-time-scale turbulent mixer model[J]. Industrial & Engineering Chemistry Research, 2009, 48(1): 424-429. | 102 | CHENG J C, YANG C, MAO Z-S. CFD-PBE simulation of premixed continuous precipitation incorporating nucleation, growth and aggregation in a stirred tank with multi-class method[J]. Chemical Engineering Science, 2012, 68(1): 469-480. | 103 | MOUSAVI S E, CHOUDHURY M R, RAHAMAN M S. 3D CFD-PBM coupled modeling and experimental investigation of struvite precipitation in a batch stirred reactor[J]. Chemical Engineering Journal, 2019, 361: 690-702. | 104 | GAVI E, RIVAUTELLA L, MARCHISIO D L, et al. CFD modelling of nano-particle precipitation in confined impinging jet reactors[J]. Chemical Engineering Research and Design, 2007, 85(5): 735-744. | 105 | GAVI E, MARCHISIO D L, BARRESI A A, et al. Turbulent precipitation in micromixers: CFD simulation and flow field validation[J]. Chemical Engineering Research and Design, 2010, 88(9): 1182-1193. | 106 | RIGOPOULOS S, JONES A G. Dynamic modelling of a bubble column for particle formation via a gas-liquid reaction[J]. Chemical Engineering Science, 2001, 56(21): 6177-6184. | 107 | RIGOPOULOS S, JONES A. Modeling of semibatch agglomerative gas-liquid precipitation of CaCO3 in a bubble column reactor[J]. Industrial & Engineering Chemistry Research, 2003, 42(25): 6567-6575. | 108 | LI Q, CHENG J, YANG C, et al. CFD-PBE-PBE simulation of an airlift loop crystallizer[J]. The Canadian Journal of Chemical Engineering, 2018, 96(6): 1382-1395. | 109 | ZHAO W L, BUFFO A, ALOPAEUS V, et al. Application of the compartmental model to the gas-liquid precipitation of CO2-Ca(OH)2 aqueous system in a stirred tank[J]. AIChE Journal, 2017, 63(1): 378-386. | 110 | Y-J CHOI, S-T CHUNG, OH M, et al. Investigation of crystallization in a jet Y-mixer by a hybrid computational fluid dynamics and process simulation approach[J]. Crystal Growth & Design, 2005, 5(3): 959-968. | 111 | WOO X Y, TAN R B H, CHOW P S, et al. Simulation of mixing effects in antisolvent crystallization using a coupled CFD-PDF-PBE approach[J]. Crystal Growth & Design, 2006, 6(6): 1291-1303. |
[1] |
WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao.
Dynamic behavior of single bubble attached to the solid wall in the AC electric field
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141.
|
[2] |
CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua.
Structure design of gas diffusion layer in proton exchange membrane fuel cell
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259.
|
[3] |
YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong.
Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275.
|
[4] |
GUO Qiang, ZHAO Wenkai, XIAO Yonghou.
Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72.
|
[5] |
SHAO Boshi, TAN Hongbo.
Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93.
|
[6] |
CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing.
Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503.
|
[7] |
LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao.
Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530.
|
[8] |
ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing.
Simulation analysis and optimization design of mixing performance of staggered impact micromixer
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572.
|
[9] |
YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi.
Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates
[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314.
|
[10] |
CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei.
Research progress in high value chemical recycling of waste polyolefins
[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978.
|
[11] |
YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi.
Performance prediction of variable-width microfluidic concentration gradient chips by deep learning
[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393.
|
[12] |
SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun.
Numerical simulation of combustion of flame retardant epoxy resin
[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419.
|
[13] |
WANG Shuo, ZHANG Yaxin, ZHU Botao.
Prediction of erosion life of coal water slurry pipeline based on grey prediction model
[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442.
|
[14] |
ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin.
Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research
[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456.
|
[15] |
LU Xingfu, DAI Bo, YANG Shiliang.
Super-quadric discrete element method investigation of mixing behaviors of cylindrical particles in a rotating drum
[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2252-2261.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd
|
|