1 | Climate Change: Atmospheric Carbon Dioxide[Z/OL].[2020-02-20]. . | 2 | Carbon dioxide: Projected emissions and concentrations[Z/OL].[2000-12-31]. . | 3 | CANADELL J G, LE QUERE C, RAUPACH M R, et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47): 18866-18870. | 4 | GISS surface temperature analysis (v4>)[Z/OL].[2020-04-13]. . | 5 | NAKICENOVIC N, ALCANMO J, DAVIS G, et al. Intergovernmental panel on climate change: special report on emissions scenarios[R]. Intergovernmental Panel on Climate Change, United Nations, Geneva, Switzerland, 2000. | 6 | ALBRITON D L, BARKER T, BASHMAKOV I A, et al. IPCC, climate change 2001: synthesis report[R]. Intergovernmental Panel on Climate Change, United Nations, Geneva, Switzerland, 2001. | 7 | PACHAURI R K, ALLEN M R, BARROS V R, et al. Climate change 2014: synthesis report[R]. Intergovernmental Panel on Climate Change, United Nations. Geneva, Switzerland, 2014. | 8 | WITTMANN A C, RTNER H-O P. Sensitivities of extant animal taxa to ocean acidification[J]. Nature Climate Change, 2013, 3(11): 995-1001. | 9 | MUNDAY P L, DIXSON D L, DONELSON J M, et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1848-1852. | 10 | GATTI L V, GLOOR M, MILLER J B, et al. Drought sensitivity of amazonian carbon balance revealed by atmospheric measurements[J]. Nature, 2014, 506(7486): 76-80. | 11 | EYRE B D, CYRONAK T, DRUPP P, et al. Coral reefs will transition to net dissolving before end of century[J]. Science, 2018, 359(6378): 908-911. | 12 | DAHLKE F T, BUTZIN M, NAHRGANG J, et al. Northern cod species face spawning habitat losses if global warming exceeds 1.5℃[J]. Science Advances, 2018, 4(11): eaas8821. | 13 | ZHU Chunwu, KOBAYASHI K, LOLADZE I, et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries[J]. Science Advances, 2018, 4(5): eaaq1012. | 14 | United Nations Framework Convention on Climate Change[Z]. United Nations. Rio de Janeiro Brazil, 1992. | 15 | Kyoto protocol to the United Nations framework convention on climate change[Z]. United Nations. Kyoto, Japan, 1997. | 16 | Agreement Paris. United Nations[Z]. Paris, France, 2015. | 17 | Communication Regarding intent to withdraw from Paris Agreement[EB/OL].[2017-08-04]. . | 18 | International Energy Agency. World energy outlook[R]. Paris, France, 2018. | 19 | New oil and gas discoveries in 2018[Z/OL].[2019-07-30]. . | 20 | ERANS M, MANOVIC V, ANTHONY E J. Calcium looping sorbents for CO2 capture[J]. Applied Energy, 2016, 180: 722-742. | 21 | BLAMEY J, ANTHONY E J, WANG Jinsheng, et al. The calcium looping cycle for large-scale CO2 capture[J]. Progress in Energy and Combustion Science, 2010, 36(2): 260-279. | 22 | International Energy Agency. Energy technology perspectives[R]. Paris, France, 2008. | 23 | STEWART C, M-A HESSAMI. A study of methods of carbon dioxide capture and sequestration—The sustainability of a photosynthetic bioreactor approach[J]. Energy Conversion and Management, 2005, 46(3): 403-420. | 24 | STEENEVELDT R, BERGER B, TORP T A. CO2 capture and storage[J]. Chemical Engineering Research and Design, 2006, 84(9): 739-763. | 25 | THIRUVENKATACHARI R, SU Shi, AN Hui, et al. Post combustion CO2 capture by carbon fibre monolithic adsorbents[J]. Progress in Energy and Combustion Science, 2009, 35(5): 438-455. | 26 | SVENSSON R, ODENBERGER M, JOHNSSON F, et al. Transportation systems for CO2—Application to carbon capture and storage[J]. Energy Conversion and Management, 2004, 45(15/16): 2343-2353. | 27 | ZHANG Zaoxiao, WANG G X, MASSAROTTO P, et al. Optimization of pipeline transport for CO2 sequestration[J]. Energy Conversion and Management, 2006, 47(6): 702-715. | 28 | International Energy Agency. Technology roadmap—Carbon capture and storage[R]. Paris, France. 2013. | 29 | BODE S, JUNG M. Carbon dioxide capture and storage—Liability for non-permanence under the UNFCCC[J]. International Environmental Agreements: Politics, Law and Economics, 2006, 6(2): 173-186. | 30 | PIRES J C M, MARTINS F G, ALVIM-FERRAZ M C M, et al. Recent developments on carbon capture and storage: an overview[J]. Chemical Engineering Research and Design, 2011, 89(9): 1446-1460. | 31 | METZ B, DAVIDSON O, DE CONINCK, et al. IPCC special report on carbon dioxide capture and storage[R]. Intergovernmental Panel on Climate Change, United Nations, Geneva, Switzerland, 2005. | 32 | AL-MAMOORI A, KRISHNAMURTHY A, ROWNAGHI A A. Carbon capture and utilization update[J]. Energy Technology, 2017, 5(6): 835-849. | 33 | ARESTA M, DIBENEDETTO A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges[J]. Dalton Transactions, 2007, 28: 2975-2992. | 34 | FAN Mun‐Sing, ABDULLAH A Z, BHATIA S. Catalytic technology for carbon dioxide reforming of methane to synthesis gas[J]. ChemCatChem, 2009, 1(2): 192-208. | 35 | GRACIANI J, MUDIYANSELAGE K, XU Fang, et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2[J]. Science, 2014, 345(6196): 546-550. | 36 | VISCONTI C G, MARTINELLI M, FALBO L, et al. CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer-Tropsch catalysts[J]. Catalysis Today, 2016, 277: 161-170. | 37 | CHEN Guangbo, GAO Rui, ZHAO Yufei, et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons[J]. Advanced Materials, 2018, 30(3): 1704663. | 38 | WEI Xing, YIN Zhenglei, Kangjie LYU, et al. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces[J]. ACS Catalysis, 2020, 10(7): 4103-4111. | 39 | SANNA A, UIBU M, CARAMANNA G, et al. A review of mineral carbonation technologies to sequester CO2[J]. Chemical Society Reviews, 2014, 43(23): 8049-8080. | 40 | SANNA A, HALL M R, MAROTO-VALER M. Post-processing pathways in carbon capture and storage by mineal carbonation (CCSM) towards the introduction of carbon neutral materials[J]. Energy & Environmental Science, 2012, 5(7): 7781. | 41 | MARKEWITZ P, KUCKSHINRICHS W, LEITNER W, et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2[J]. Energy & Environmental Science, 2012, 5(6): 7281. | 42 | HU Boxun, GUILD C, SUIB S L. Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products[J]. Journal of CO2 Utilization, 2013, 1: 18-27. | 43 | ALIE C, BACKHAM L, CROISET E, et al. Simulation of CO2 capture using MEA scrubbing: a flowsheet decomposition method[J]. Energy Conversion and Management, 2005, 46(3): 475-487. | 44 | CHI Susan, ROCHELLE G T. Oxidative degradation of monoethanolamine[J]. Industrial & Engineering Chemistry Research, 2002, 41(17): 4178-4186. | 45 | FYTIANOS G, UCAR S, GRIMSTVEDT A, et al. Corrosion and degradation in MEA based post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2016, 46: 48-56. | 46 | ZHANG Shihan, SHEN Yao, WANG Lidong, et al. Phase change solvents for post-combustion CO2 capture: principle, advances, and challenges[J]. Applied Energy, 2019, 239: 876-897. | 47 | SHIMIZU T, HIRAMA T, HOSODA H, et al. A twin fluid-bed reactor for removal of CO2 from combustion processes[J]. Chemical Engineering Research and Design, 1999, 77(1): 62-68. | 48 | MANOVIC V, ANTHONY E J. SO2 retention by reactivated CaO-based sorbent from multiple CO2 capture cycles[J]. Environmental Science & Technology, 2007, 41(12): 4435-4440. | 49 | MANOVIC V, WU Yinghai, HE Ian, et al. Spray water reactivation/pelletization of spent CaO-based sorbent from calcium looping cycles[J]. Environmental Science & Technology, 2012, 46(22): 12720-12725. | 50 | SUN P, GRACE J R, LIM C J, et al. The effect of CaO sintering on cyclic CO2 capture in energy systems[J]. AIChE Journal, 2007, 53(9): 2432-2442. | 51 | HANAK D P, BILIYOK C, ANTHONY E J, et al. Modelling and comparison of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant[J]. International Journal of Greenhouse Gas Control, 2015, 42: 226-236. | 52 | ROMANO M C. Modeling the carbonator of a Ca-looping process for CO2 capture from power plant flue gas[J]. Chemical Engineering Science, 2012, 69(1): 257-269. | 53 | DEAN C C, BLAMEY J, FLORIN N H, et al. The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production[J]. Chemical Engineering Research and Design, 2011, 89(6): 836-855. | 54 | MANTRIPRAGADA H C, RUBIN E S. Calcium looping cycle for CO2 capture: performance, cost and feasibility analysis[J]. Energy Procedia, 2014, 63: 2199-2206. | 55 | C-C CORMOS. Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle[J]. Energy, 2014, 78: 665-673. | 56 | C-C CORMOS. Assessment of chemical absorption/adsorption for post-combustion CO2 capture from natural gas combined cycle (NGCC) power plants[J]. Applied Thermal Engineering, 2015, 82: 120-128. | 57 | RIDHA F N, LU D, MACCHI A, et al. Combined calcium looping and chemical looping combustion cycles with CaO-CuO pellets in a fixed bed reactor[J]. Fuel, 2015, 153: 202-209. | 58 | ARIAS B, DIEGO M E, ABANADES J C, et al. Demonstration of steady state CO2 capture in a 1.7MWth calcium looping pilot[J]. International Journal of Greenhouse Gas Control, 2013, 18: 237-245. | 59 | STR?HLE J, JUNK M, KREMER J, et al. Carbonate looping experiments in a 1MWth pilot plant and model validation[J]. Fuel, 2014, 127: 13-22. | 60 | HILZ J, HAAF M, HELBIG M, et al. Scale-up of the carbonate looping process to a 20?MWth pilot plant based on long-term pilot tests[J]. International Journal of Greenhouse Gas Control, 2019, 88: 332-341. | 61 | LYSIKOV A I, SALANOV A N, OKUNEV A G. Change of CO2 carrying capacity of CaO in isothermal recarbonation-decomposition cycles[J]. Industrial & Engineering Chemistry Research, 2007, 46(13): 4633-4638. | 62 | COPPOLA A, SCALA F, SALATINO P, et al. Fluidized bed calcium looping cycles for CO2 capture under oxy-firing calcination conditions (Ⅰ): Assessment of six limestones[J]. Chemical Engineering Journal, 2013, 231: 537-543. | 63 | CASTILLO R. Thermodynamic analysis of a hard coal oxyfuel power plant with high temperature three-end membrane for air separation[J]. Applied Energy, 2011, 88: 1480-1493. | 64 | MBERG L STR, LINDGREN G, JACOBY J, et al. Update on Vattenfall’s 30 MWth oxyfuel pilot plant in Schwarze Pumpe[J]. Energy Procedia, 2009, 1: 581-589. | 65 | STURGEON D W, CAMERON E D, FITZGERALD F D. Demonstration of an oxyfuel combustion system[J]. Energy Procedia, 2009, 1: 471-478. | 66 | STANGER R, WALL T, SP?RL R, et al. Oxyfuel combustion for CO2 capture in power plants[J]. International Journal of Greenhouse Gas Control, 2015, 40: 55-125. | 67 | GUO Junjun, HU Fan, JIANG Xudong, et al. Experimental and numerical investigations on heat transfer characteristics of a 35MW oxy-fuel combustion boiler[J]. Energy Procedia, 2017, 114: 481-489. | 68 | STADLER H, BEGGEL F, HABERMEHL M, et al. Oxyfuel coal combustion by efficient integration of oxygen transport membranes[J]. International Journal of Greenhouse Gas Control, 2011, 5(1): 7-15. | 69 | ADANEZ J, ABAD A, GARCIA-LABIANO F, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2): 215-282. | 70 | LUO Siwei, ZENG Liang, FAN Liang-Shih. Chemical looping technology: oxygen carrier characteristics[J]. Annual Review of Chemical and Biomolecular Engineering, 2015, 6: 53-75. | 71 | ZENG Liang, CHENG Zhuo, FAN J A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349-364. | 72 | FAN Liang-Shih, LI Fanxing. Chemical looping technology and its fossil energy conversion applications[J]. Industrial & Engineering Chemistry Research, 2010, 49(21): 10200-10211. | 73 | 曾亮, 罗四维, 李繁星, 等. 化学链技术及其在化石能源转化与二氧化碳捕集领域的应用[J]. 中国科学(化学), 2012, 42(3): 260-281. | 73 | ZENG Liang, LUO Siwei, LI Fanxing, et al. Chemical looping technology and its applications in fossil fuel conversion and CO2 capture[J]. Scientia Sinica Chimica, 2012, 42(3): 260-281. | 74 | KUNZE C, SPLIETHOFF H. Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants[J]. Applied Energy, 2012, 94: 109-116. | 75 | Powerfuel 900MW Hatfield IGCC project United Kingdom[EB/OL].[2009-02-15]. . | 76 | Siemens system picked for 270MW coal-to-gas plant[EB/OL].[2009-05-14] . | 77 | GUO Yun, HUANG Zhiqiang, ZHOU Zhiguan. Technology roadmap of IGCC industry in China[J]. Energy and Power Engineering, 2015, 7(11): 535-545. | 78 | COURSON C, GALLUCCI K. CaO-based high-temperature CO2 sorbents[M]//WANG Qiang. Pre-combustion carbon dioxide capture materials. Cambridge: Royal Society of Chemistry, 2018: 144-237. | 79 | SCHWACH P, PAN Xiulian, BAO Xinhe. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects[J]. Chemical Reviews, 2017, 117(13): 8497-8520. | 80 | DING Yulong, ALPAY E. Adsorption-enhanced steam-methane reforming[J]. Chemical Engineering Science, 2000, 55(18): 3929-3940. | 81 | ORTIZ A L, HARRISON D P. Hydrogen production using sorption-enhanced reaction[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5102-5109. | 82 | YI Kwang Bok, HARRISON D P. Low-pressure sorption-enhanced hydrogen production[J]. Industrial & Engineering Chemistry Research, 2005, 44(6): 1665-1669. | 83 | KATO M, MAEZAWA Y, TAKEDA S, et al. Pre-combustion CO2 capture using ceramic absorbent and methane steam reforming[J]. Journal of the Ceramic Society of Japan, 2005, 113(1315): 252-254. | 84 | JOHNSEN K, Hojung RYU, GRACE J R, et al. Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO2-acceptor[J]. Chemical Engineering Science, 2006, 61(4): 1195-1202. | 85 | ALVAREZ D, ABANADES J C. Determination of the critical product layer thickness in the reaction of CaO with CO2[J]. Industrial & Engineering Chemistry Research, 2005, 44(15): 5608-5615. | 86 | HAN Chun, HARRISON D P. Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen[J]. Chemical Engineering Science, 1994, 49(24): 5875-5883. | 87 | International Energy Agency. Technology roadmap—Hydrogen and fuel cells[R]. Paris, France, 2013. | 88 | KIRUBAKARAN V, SIVARAMAKRISHNAN V, NALINI R, et al. A review on gasification of biomass[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 179-186. | 89 | SCHWENGBER C A, ALVES H J, SCHAFFNER R A, et al. Overview of glycerol reforming for hydrogen production[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 259-266. | 90 | DOU Binlin, ZHANG Hua, SONG Yongchen, et al. Hydrogen production from the thermochemical conversion of biomass: issues and challenges[J]. Sustainable Energy & Fuels, 2019, 3(2): 314-342. | 91 | FERMOSO J, HE Li, CHEN D. Sorption enhanced steam reforming (SESR): a direct route towards efficient hydrogen production from biomass-derived compounds[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(10): 1367-1374. | 92 | HE Li, BERNTSEN H, CHEN De. Approaching sustainable H2 production: sorption enhanced steam reforming of ethanol[J]. The Journal of Physical Chemistry A, 2010, 114(11): 3834-3844. | 93 | LYSIKOV A I, TRUKHAN S N, OKUNEV A G. Sorption enhanced hydrocarbons reforming for fuel cell powered generators[J]. International Journal of Hydrogen Energy, 2008, 33(12): 3061-3066. | 94 | WU Gaowei, ZHANG Chengxi, LI Shuirong, et al. Sorption enhanced steam reforming of ethanol on Ni-CaO-Al2O3 multifunctional catalysts derived from hydrotalcite-like compounds[J]. Energy & Environmental Science, 2012, 5(10): 8942. | 95 | CUI Y, GALVITA V, RIHKO-STRUCKMANN L, et al. Steam reforming of glycerol: the experimental activity of La1-xCexNiO3 catalyst in comparison to the thermodynamic reaction equilibrium[J]. Applied Catalysis B: Environmental, 2009, 90(1/2): 29-37. | 96 | DOU Binlin, DUPONT V, RICKETT G, et al. Hydrogen production by sorption-enhanced steam reforming of glycerol[J]. Bioresource Technology, 2009, 100(14): 3540-3547. | 97 | DOU Binlin, WANG Chao, CHEN Haisheng, et al. Continuous sorption-enhanced steam reforming of glycerol to high-purity hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(27): 11902-11909. | 98 | HE Li, PARRA J M S, BLEKKAN E A, et al. Towards efficient hydrogen production from glycerol by sorption enhanced steam reforming[J]. Energy & Environmental Science, 2010, 3(8): 1046. | 99 | FERMOSO J, HE Li, CHEN De. Production of high purity hydrogen by sorption enhanced steam reforming of crude glycerol[J]. International Journal of Hydrogen Energy, 2012, 37(19): 14047-14054. | 100 | SCOTT D S, PISKORZ J, RADLEIN D. Liquid products from the continuous flash pyrolysis of biomass[J]. Industrial & Engineering Chemistry Process Design and Development, 1985, 24(3): 581-588. | 101 | IORDANIDIS A, KECHAGIOPOULOS P, VOUTETAKIS S, et al. Autothermal sorption-enhanced steam reforming of bio-oil/biogas mixture and energy generation by fuel cells: concept analysis and process simulation[J]. International Journal of Hydrogen Energy, 2006, 31(8): 1058-1065. | 102 | GIL M V, FERMOSO J, RUBIERA F, et al. H2 production by sorption enhanced steam reforming of biomass-derived bio-oil in a fluidized bed reactor: an assessment of the effect of operation variables using response surface methodology[J]. Catalysis Today, 2015, 242: 19-34. | 103 | GIL M V, FERMOSO J, PEVIDA C, et al. Production of fuel-cell grade H2 by sorption enhanced steam reforming of acetic acid as a model compound of biomass-derived bio-oil[J]. Applied Catalysis B: Environmental, 2016, 184: 64-76. | 104 | ESTEBAN- DíEZ G, GIL M V, PEVIDA C, et al. Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds[J]. Applied Energy, 2016, 177: 579-590. | 105 | XIE Huaqing, YU Qingbo, ZUO Zongliang, et al. Hydrogen production via sorption-enhanced catalytic steam reforming of bio-oil[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2345-2353. | 106 | HE Li, CHEN De. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises[J]. ChemSusChem, 2012, 5(3): 5875-595. | 107 | DANG Chengxiong, WU Shijie, YANG Guangxing, et al. Hydrogen production from sorption-enhanced steam reforming of phenol over a Ni-Ca-Al-O bi-functional catalyst[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7111-7120. | 108 | WU Xiang, WU Sufang. Production of high-purity hydrogen by sorption-enhanced steam reforming process of methanol[J]. Journal of Energy Chemistry, 2015, 24(3): 315-321. | 109 | QI Tongyichao, YANG Ying, WU Yijiang, et al. Sorption-enhanced methanol steam reforming for hydrogen production by combined copper-based catalysts with hydrotalcites[J]. Chemical Engineering and Processing: Process Intensification, 2018, 127: 72-82. | 110 | DEWOOLKAR K D, VAIDYA P D. Sorption-enhanced steam reforming of ethylene glycol over dual functional hydrotalcite materials promoted with Pt and Ru[J]. Chemistry Select, 2017, 2(27): 8326-8336. | 111 | DEWOOLKAR K D, VAIDYA P D. New hybrid materials for improved hydrogen production by the sorption-enhanced steam reforming of butanol[J]. Energy Technology, 2017, 5(8): 1300-1310. | 112 | DOU Binlin, WANG Kaiqiang, JIANG Bo, et al. Fluidized-bed gasification combined continuous sorption-enhanced steam reforming system to continuous hydrogen production from waste plastic[J]. International Journal of Hydrogen Energy, 2016, 41(6): 3803-3810. | 113 | LI Zhenshan, CAI Ningsheng, HUANG Yuyu, et al. Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent[J]. Energy & Fuels, 2005, 19(4): 1447-1452. | 114 | MARTAVALTZI C S, PEFKOS T D, LEMONIDOU A A. Operational window of sorption enhanced steam reforming of methane over CaO-Ca12Al14O33[J]. Industrial & Engineering Chemistry Research, 2011, 50(2): 539-545. | 115 | XIE Miaomiao, ZHOU Zhiming, QI Yang, et al. Sorption-enhanced steam methane reforming by in situ CO2 capture on a CaO-Ca9Al6O18 sorbent[J]. Chemical Engineering Journal, 2012, 207/208: 142-150. | 116 | KIM Jong-Nam, Chang Hyun KO, YI Kwang Bok. Sorption enhanced hydrogen production using one-body CaO-Ca12Al14O33-Ni composite as catalytic absorbent[J]. International Journal of Hydrogen Energy, 2013, 38(14): 6072-6078. | 117 | CHEN Xiangling, YANG Lei, ZHOU Zhiming, et al. Core-shell structured CaO-Ca9Al6O18@Ca5Al6O14/Ni bifunctional material for sorption-enhanced steam methane reforming[J]. Chemical Engineering Science, 2017, 163: 114-122. | 118 | WANG Chao, DOU Binlin, JIANG Bo, et al. Sorption-enhanced steam reforming of glycerol on Ni-based multifunctional |
[1] |
XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping.
Platinum-based catalysts for SO2 depolarized electrolysis
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309.
|
[2] |
GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu.
Research progress on the application of MOFs in photoelectrocatalysis
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705.
|
[3] |
CHANG Yinlong, ZHOU Qimin, WANG Qingyue, WANG Wenjun, LI Bogeng, LIU Pingwei.
Research progress in high value chemical recycling of waste polyolefins
[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3965-3978.
|
[4] |
ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei.
Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction
[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282.
|
[5] |
WANG Yunqing, YANG Guorui, YAN Wei.
Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction
[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549.
|
[6] |
FU Shurong, WANG Lina, WANG Dongwei, LIU Rui, ZHANG Xiaohui, MA Zhanwei.
Oxygen evolution cocatalyst enhancing the photoanode performances for photoelectrochemical water splitting
[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2353-2370.
|
[7] |
WANG Zizong, LIU Gang, WANG Zhenwei.
Progress and reflection on process intensification technology for ethylene/propylene production
[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1669-1676.
|
[8] |
FU Le, YANG Yang, XU Wenqing, GENG Zanbu, ZHU Tingyu, HAO Runlong.
Research progress in CO2 capture technology using novel biphasic organic amine absorbent
[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2068-2080.
|
[9] |
XIAO Zhourong, LI Guozhu, WANG Li, ZHANG Xiangwen, GU Jianmin, WANG Desong.
Research progress of the catalysts for hydrogen production via liquid hydrocarbon fuels steam reforming
[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 97-107.
|
[10] |
HU Bing, XU Lijun, HE Shan, SU Xin, WANG Jiwei.
Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality
[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604.
|
[11] |
YAN Peng, CHENG Yi.
Numerical simulation of membrane reactor of methane steam reforming for distributed hydrogen production
[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3446-3454.
|
[12] |
TAO Li, YANG Qirong, LI Zhaoying, QI Hao, WANG Liwei, MA Xinru.
Mechanism of hydrogen production by catalytic pyrolysis of tire rubber based on molecular dynamics simulation
[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3010-3021.
|
[13] |
SUN Xun, ZHAO Yue, XUAN Xiaoxu, ZHAO Shan, YOON Joon Yong, CHEN Songying.
Advances in process intensification based on hydrodynamic cavitation
[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2243-2255.
|
[14] |
SHI Yici, PAN Yanqiu, WANG Chengyu, FAN Jiahe, YU Lu.
Experimental investigations on Joule effect enhanced air gap membrane distillation for water desalination
[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2285-2291.
|
[15] |
ZHANG Xuan, FAN Xinye, WU Zhenyu, ZHENG Lijun.
Hydrogen energy supply chain cost analysis and suggestions
[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2364-2371.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd
|
|