Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (11): 4845-4855.DOI: 10.16085/j.issn.1000-6613.2019-0300
• Chemical processes and equipment • Previous Articles Next Articles
Hongxia CHEN(),Yuan SUN,Hongyang XIAO,Lin LIU
Received:
2019-02-01
Online:
2019-11-05
Published:
2019-11-05
Contact:
Hongxia CHEN
通讯作者:
陈宏霞
作者简介:
陈宏霞(1980—),女,博士,副教授,研究方向为两相流、强化传热、化学工程等。E-mail:基金资助:
CLC Number:
Hongxia CHEN,Yuan SUN,Hongyang XIAO,Lin LIU. Numerical simulation of single bubble boiling on micro-pillar structure surface[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4845-4855.
陈宏霞,孙源,肖红洋,刘霖. 微柱结构表面核态沸腾单气泡的数值模拟[J]. 化工进展, 2019, 38(11): 4845-4855.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2019-0300
材料 | 密度 /kg·m-1 | 比热容 /J·kg-1·K-1 | 导热系数 /W·m-1·K-1 | 黏度 /kg·m-1·s-1 | 气液界面表面 张力系数/N·m-1 | 壁面静态接触角 /(°) |
---|---|---|---|---|---|---|
液态水 | 958.4566 | 4215.5 | 0.6772 | 0.000282026 | 0.06164 | — |
水蒸气 | 0.5976 | 2079.8 | 0.0246 | 1.22×10-5 | ||
单晶硅 | 2330 | 766 | 148 | — | — | 48 |
材料 | 密度 /kg·m-1 | 比热容 /J·kg-1·K-1 | 导热系数 /W·m-1·K-1 | 黏度 /kg·m-1·s-1 | 气液界面表面 张力系数/N·m-1 | 壁面静态接触角 /(°) |
---|---|---|---|---|---|---|
液态水 | 958.4566 | 4215.5 | 0.6772 | 0.000282026 | 0.06164 | — |
水蒸气 | 0.5976 | 2079.8 | 0.0246 | 1.22×10-5 | ||
单晶硅 | 2330 | 766 | 148 | — | — | 48 |
1 | CHU K H , JOUNG Y S , ENRIGHT R , et al . Hierarchically structured surfaces for boiling critical heat flux enhancement[J]. Applied Physics Letters, 2013, 102(15): 151602. |
2 | DONG L , QUAN X , CHENG P . An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures[J]. International Journal of Heat and Mass Transfer,2014, 71: 189-196. |
3 | DHILLON N S , BUONGIORNO J , VARANASI K K . Critical heat flux maxima during boiling crisis on textured surfaces[J]. Nature Communications, 2015, 6: 5247. |
4 | KIM S H , LEE G C, KANG J Y , et al . Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface[J]. International Journal of Heat and Mass Transfer, 2015, 91: 1140-1147. |
5 | WEN R , LI Q , WANG W , et al . Enhanced bubble nucleation and liquid rewetting for highly efficient boiling heat transfer on two-level hierarchical surfaces with patterned copper nanowire arrays[J]. Nano Energy, 2017, 38: 59-65. |
6 | KUNKELMANN C , STEPHAN P . Numerical simulation of the transient heat transfer during nucleate boiling of refrigerant HFE-7100[J]. International Journal of Refrigeration, 2010, 33(7): 1221-1228. |
7 | CHEM Z , UTAKA Y . On heat transfer and evaporation characteristics in the growth process of a bubble with microlayer structure during nucleate boiling[J]. International Journal of Heat and Mass Transfer, 2015, 81: 750-759. |
8 | SATO Y , NICENO B . Nucleate pool boiling simulations using the interface tracking method: boiling regime from discrete bubble to vapor mushroom region[J]. International Journal of Heat and Mass Transfer, 2017, 105: 505-524. |
9 | SATO Y , NICENO B . A depletable micro-layer model for nucleate pool boiling[J]. Journal of Computational Physics, 2015, 300: 20-52. |
10 | SUSSMAN M , SMEREKA P , OSHER S . A level set approach for computing solutions to incompressible two-phase flow[J]. Journal of Computational Physics, 1994, 114(1): 146-159. |
11 | SON G, DHIR V K . Numerical simulation of film boiling near critical pressures with a level set method[J]. Journal of Heat Transfer, 1998, 120(1): 183-192. |
12 | SON G, DHIR V K , RAMANUJAPU N . Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface[J]. Journal of Heat Transfer, 1999, 121(3): 623-631. |
13 | SON G, RAMANUJAPU N , DHIR V K . Numerical simulation of bubble merger process on a single nucleation site during pool nucleate boiling[J]. Journal of Heat Transfer, 2002, 124(1): 51-62. |
14 | SON G, DHIR V K , Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes [J]. International Journal of Heat and Mass Transfer, 2008, 51(9/10): 2566-2582. |
15 | LEE W, SON G . Numerical simulation of boiling enhancement on a microstructured surface[J]. International Communications in Heat and Mass Transfer, 2011, 38(2): 168-173. |
16 | HIRT C W , NICHOLS B D . Volume of fluid (VOF) method for the dynamics of free boundary[J]. Journal of Computational Physics, 1981, 39(1): 201-225. |
17 | YOUNGS D L . Time-dependent multi-material flow with large fluid distortion[M]. MORTON K W, BAINES M J. New York: Academic Press, 1982: 274-285. |
18 | KUNKELMANN C , STEPHAN P . CFD simulation of boiling flows using the volume-of-fluid method within open foam[J]. Numerical Heat Transfer Part A: Applications, 2009, 56(8): 631-646. |
19 | JIA H W , ZHANG P , FU X , JIANG S C . A numerical investigation of nucleate boiling at a constant surface temperature[J]. Applied Thermal Engineering, 2015, 88: 248-257. |
20 | LING K , LI Z Y , TAO W Q . A direct numerical simulation for nucleate boiling by the VOSET method[J]. Numerical Heat Transfer Part A: Applications, 2013, 65(10): 949-971. |
21 | ZHANG L , LI Z D , LI K , et al . Influence of heater thermal capacity on bubble dynamics and heat transfer in nucleate pool boiling[J]. Applied Thermal Engineering, 2015, 88: 118-126. |
22 | BADILLO A . Quantitative phase-field modeling for boiling phenomena[J]. Physical Reviewe, 2012, 86(4): 041603. |
23 | SCHRAGE R W . A theoretical study of interphase mass transfer[D]. New York: Columbia University, 1953. |
24 | KNUDSEN M , PARTINGTON J R . The kinetic. Theory of gases. Some modern aspects[J]. The Journal of Physical Chemistry, 1935, 39(2): 307. |
25 | MAREK R , STRAUB J . Analysis of the evaporation coefficient and the condensation coefficient of water[J]. International Journal of Heat and Mass Transfer, 2001, 44(1): 39-53. |
26 | ZHOU Z , SHI J , CHEN H H , et al . Two-phase flow over flooded micro-pillar structures with engineered wettability pattern[J]. International Journal of Heat and Mass Transfer, 2014, 71: 593-605. |
27 | CHEN B , ZHOU Z , SHI J , et al . Flooded two-phase flow dynamics and heat transfer with engineered wettability on microstructured surfaces[J]. Journal of Heat Transfer, 2015, 137(9): 091021. |
28 | ZHAO Z , ZHANG J , JIA D , et al . Thermal performance analysis of pool boiling on an enhanced surface modified by the combination of microstructures and wetting properties[J]. Applied Thermal Engineering, 2017, 117: 417-426. |
29 | LEE W H . A pressure iteration scheme for two-phase flow modeling[M]. Los Alamos: Los Alamos Scientific Laboratory, 1980: 407-431. |
30 | GIBOU F , CHEN L , NGUYEN D , et al . A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change[J]. Journal of Computational Physics, 2007, 222(2): 536-555. |
31 | SHIN S , JURIC D . Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity[J]. Journal of Computational Physics, 2002, 180(2): 427-470. |
32 | GANAPATHY H , SHOOSHTARI A , CHOO K . Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels[J]. International Journal of Heat and Mass Transfer, 2013, 65: 62-72. |
33 | SUN D L , XU J L , WANG L . Development of a vapor-liquid phase change model for volume-of-fluid method in FLUENT[J]. International Communications in Heat and Mass Transfer, 2012, 39(8): 1101-1106. |
34 | LEE W, SON G, YOON H Y . Numerical study of bubble growth and boiling heat transfer on a microfinned surface[J]. International Communications in Heat and Mass Transfer, 2012, 39(1): 52-57. |
35 | LEE W, SON G . Three-dimensional simulation of bubble growth on horizontal microstructured surfaces[C]//Begell House, Inc. Proceedings of Cht-12-Ichmt International Symposium on Advances in Computational Heat Transfer. New York: Begell House, Inc, 2012: 1091-1100. |
36 | LI Q , YU Y , ZHOU P , et al . Enhancement of boiling heat transfer using hydrophilic-hydrophobic mixed surfaces: a lattice Boltzmann study[J]. Applied Thermal Engineering, 2017, 132: 490-499. |
37 | YU Y , WEN Z X , LI Q , et al . Boiling heat transfer on hydrophilic-hydrophobic mixed surfaces: a 3D lattice Boltzmann study[J]. Applied Thermal Engineering, 2018, 142: 846-854. |
38 | BRACKBILL J U , KOTHE D B , ZEMACH C . A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100: 335-354. |
39 | UTAKA Y , KASHIWABARA Y , OZAKI M . Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure[J]. International Journal of Heat and Mass Transfer, 2013, 57(1): 222-230. |
40 | ISSA R I . Solution of the implicitly discretized fluid flow equations by operator-splitting[J]. Journal of Computational Physics, 1985, 62(1): 40-65. |
41 | YABUKI T , NAKABEPPU O . Heat transfer mechanisms in isolated bubble boiling of water observed with MEMS sensor[J]. International Journal of Heat and Mass Transfer, 2014, 76: 286-297. |
[1] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[2] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[3] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[4] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[5] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[6] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[7] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[8] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[9] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[10] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[11] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[12] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[13] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[14] | LU Xingfu, DAI Bo, YANG Shiliang. Super-quadric discrete element method investigation of mixing behaviors of cylindrical particles in a rotating drum [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2252-2261. |
[15] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |