Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (05): 2353-2362.DOI: 10.16085/j.issn.1000-6613.2018-1427
• Industrial catalysis • Previous Articles Next Articles
Delin YUAN1(),Aihua XING1(),Ping MIAO1,Lishan CUI2,Qi SUN1
Received:
2018-07-11
Revised:
2018-11-08
Online:
2019-05-05
Published:
2019-05-05
Contact:
Aihua XING
通讯作者:
邢爱华
作者简介:
<named-content content-type="corresp-name">袁德林</named-content>(1985—),男,博士,研究方向为甲醇制烯烃催化剂与工艺开发。E-mail:<email>yuandelin@nicenergy.com</email>。
基金资助:
CLC Number:
Delin YUAN, Aihua XING, Ping MIAO, Lishan CUI, Qi SUN. Synthesis of SAPO-34 with dual-template method and its MTO catalytic performance[J]. Chemical Industry and Engineering Progress, 2019, 38(05): 2353-2362.
袁德林, 邢爱华, 繆平, 崔立山, 孙琦. 双模板剂法SAPO-34分子筛的合成及其MTO催化性能调变[J]. 化工进展, 2019, 38(05): 2353-2362.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1427
R | x (TEAOH) | y (DEA) | n(TEAOH)+ n(DEA) | 物相 | 收率 /% |
---|---|---|---|---|---|
0 | 0 | 1.89 | 1.89 | SAPO-11 + SAPO-34 | — |
0.5 | 0.63 | 1.26 | 1.89 | SAPO-34 | 71.4 |
2.0 | 1.26 | 0.63 | 1.89 | SAPO-34 | 69.7 |
4.9 | 1.57 | 0.32 | 1.89 | SAPO-34 | 64.7 |
7.0 | 1.65 | 0.24 | 1.89 | SAPO-34 | 67.2 |
∞ | 1.89 | 0 | 1.89 | SAPO-34 | 57.0 |
R | x (TEAOH) | y (DEA) | n(TEAOH)+ n(DEA) | 物相 | 收率 /% |
---|---|---|---|---|---|
0 | 0 | 1.89 | 1.89 | SAPO-11 + SAPO-34 | — |
0.5 | 0.63 | 1.26 | 1.89 | SAPO-34 | 71.4 |
2.0 | 1.26 | 0.63 | 1.89 | SAPO-34 | 69.7 |
4.9 | 1.57 | 0.32 | 1.89 | SAPO-34 | 64.7 |
7.0 | 1.65 | 0.24 | 1.89 | SAPO-34 | 67.2 |
∞ | 1.89 | 0 | 1.89 | SAPO-34 | 57.0 |
样品 R | 总比表面积 /m2·g-1 | 微孔比表面积 /m2·g-1 | 外比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 微孔 孔容 /cm3·g-1 | 介孔 孔容 /cm3·g-1 | 10nm介孔孔容 /cm3·g-1 |
---|---|---|---|---|---|---|---|
0.5 | 370.2 | 332.5 | 37.7 | 0.16 | 0.11 | 0.05 | 0.014 |
2.0 | 771.6 | 745.1 | 26.5 | 0.33 | 0.27 | 0.06 | 0.022 |
4.9 | 760.9 | 711.8 | 49.1 | 0.34 | 0.26 | 0.08 | 0.031 |
7.0 | 769.3 | 742.2 | 27.1 | 0.34 | 0.27 | 0.07 | 0.025 |
∞ | 627.4 | 591.2 | 36.2 | 0.25 | 0.23 | 0.02 | 0.005 |
样品 R | 总比表面积 /m2·g-1 | 微孔比表面积 /m2·g-1 | 外比表面积 /m2·g-1 | 总孔容 /cm3·g-1 | 微孔 孔容 /cm3·g-1 | 介孔 孔容 /cm3·g-1 | 10nm介孔孔容 /cm3·g-1 |
---|---|---|---|---|---|---|---|
0.5 | 370.2 | 332.5 | 37.7 | 0.16 | 0.11 | 0.05 | 0.014 |
2.0 | 771.6 | 745.1 | 26.5 | 0.33 | 0.27 | 0.06 | 0.022 |
4.9 | 760.9 | 711.8 | 49.1 | 0.34 | 0.26 | 0.08 | 0.031 |
7.0 | 769.3 | 742.2 | 27.1 | 0.34 | 0.27 | 0.07 | 0.025 |
∞ | 627.4 | 591.2 | 36.2 | 0.25 | 0.23 | 0.02 | 0.005 |
样品R | 体相元素组成 (摩尔分数,XRF)/% | 表面元素组成 (摩尔分数,XPS)/% | Si(表面) /Si(体相) | ||||
---|---|---|---|---|---|---|---|
Al | Si | P | Al | Si | P | ||
0.5 | 48.4 | 8.3 | 43.2 | 51.7 | 8.2 | 40.0 | 0.99 |
2.0 | 48.3 | 7.4 | 44.2 | 53.9 | 9.8 | 36.3 | 1.32 |
4.9 | 49.1 | 8.3 | 42.3 | 53.7 | 10.1 | 36.3 | 1.21 |
7.0 | 48.8 | 7.8 | 43.4 | 53.5 | 8.5 | 38.0 | 1.09 |
∞ | 48.6 | 7.9 | 43.2 | 52.5 | 8.8 | 38.7 | 1.11 |
样品R | 体相元素组成 (摩尔分数,XRF)/% | 表面元素组成 (摩尔分数,XPS)/% | Si(表面) /Si(体相) | ||||
---|---|---|---|---|---|---|---|
Al | Si | P | Al | Si | P | ||
0.5 | 48.4 | 8.3 | 43.2 | 51.7 | 8.2 | 40.0 | 0.99 |
2.0 | 48.3 | 7.4 | 44.2 | 53.9 | 9.8 | 36.3 | 1.32 |
4.9 | 49.1 | 8.3 | 42.3 | 53.7 | 10.1 | 36.3 | 1.21 |
7.0 | 48.8 | 7.8 | 43.4 | 53.5 | 8.5 | 38.0 | 1.09 |
∞ | 48.6 | 7.9 | 43.2 | 52.5 | 8.8 | 38.7 | 1.11 |
样品R | Si羟基缺陷位含量/% | Si(4Al)/% | Si(3Al)/% |
---|---|---|---|
0.5 | 50.8 | 49.2 | 0 |
2.0 | 42.9 | 57.1 | 0 |
4.9 | 64.5 | 31.7 | 3.8 |
7.0 | 53.2 | 46.8 | 0 |
∞ | 57.7 | 42.3 | 0 |
样品R | Si羟基缺陷位含量/% | Si(4Al)/% | Si(3Al)/% |
---|---|---|---|
0.5 | 50.8 | 49.2 | 0 |
2.0 | 42.9 | 57.1 | 0 |
4.9 | 64.5 | 31.7 | 3.8 |
7.0 | 53.2 | 46.8 | 0 |
∞ | 57.7 | 42.3 | 0 |
1 | TIAN P , WEI Y , YE M , et al .Methanol to olefins (MTO): from fundamentals to commercialization[J]. ACS Catalysis, 2015, 5(3): 1922-1938. |
2 | WANG P , YANG D , HU J , et al .Synthesis of SAPO-34 with small and tunable crystallite size by two-step hydrothermal crystallization and its catalytic performance for MTO reaction[J]. Catalysis Today, 2013, 212(2): 62.e1-62.e8. |
3 | AGHAEI E , HAGHIGHI M .Effect of crystallization time on properties and catalytic performance of nanostructured SAPO-34 molecular sieve synthesized at high temperatures for conversion of methanol to light olefins[J]. Powder Technology, 2015, 269: 358-370. |
4 | CAI D , MA Y, HOU Y , et al .Establishing discrete ising model for zeolite deactivation: inspiration from the game of Go[J]. Catalysis Science & Technology, 2017, 7(12): 2375-2640. |
5 | WANG C , YANG M , ZHANG W , et al . Organophosphorous surfactant-assistant synthesis of SAPO-34 molecular sieve with special morphology and improved MTO performance[J]. RSC Advances, 2016, 6(53): 47864-47872. |
6 | SUN Q , WANG N , GUO G , et al . Ultrafast synthesis of nano-sized zeolite SAPO-34 with excellent MTO catalytic performance[J]. Chemical Communications, 2015, 51(91): 16397-16400. |
7 | 赵飞, 李渊, 张岩, 等 . 对比SSZ-13和SAPO-34分子筛在甲醇制烯烃中的研究进展[J]. 化工进展, 2017, 36(1): 166-173. |
ZHAO Fei , LI Yuan , ZHANG Yan , et al . Research progress of SSZ-13 and SAPO-34 zeolites for methanol to olefins[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 166-173. | |
8 | DAI W , CAO G , YANG L , et al . Insights into the catalytic cycle and activity of methanol-to-olefin conversion over low-silica AlPO-34 zeolites with controllable Brønsted acid density[J]. Catalysis Science & Technology, 2017, 7(3): 607-618. |
9 | ZHONG J , HAN J , WEI Y , et al . Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications[J]. Catalysis Science & Technology, 2017, 7(21): 4905-4923. |
10 | VOMSCHEID R , BRIEND M , PELTRE M J , et al . The role of the template in directing the Si distribution in SAPO zeolites[J]. Journal of Physical Chemistry, 1994, 98(38): 9614-9618. |
11 | LI Z , MARTINES-TRIGUERO J , YU J , et al . Conversion of methanol to olefins: stabilization of nanosized SAPO-34 by hydrothermal treatment[J]. Journal of Catalysis, 2015, 329: 379-388. |
12 | 刘广宇, 田鹏, 刘中民 .二乙胺导向合成SAPO-34及与其它模板剂的对比[J]. 催化学报, 2012, 33(1): 174-182. |
LIU Guangyu , TIAN Peng , LIU Zhongmin .Synthesis of SAPO-34 molecular sieves templated with diethylamine and comparison with other templates[J]. Chinese Journal of Catalysis, 2012, 33(1): 174-182. | |
13 | CHAE H , PARK I , SONG Y , et al . Physicochemical characteristics of SAPO-34 molecular sieves synthesized with mixed templates as MTO catalysts[J]. Journal of Nanoscience & Nanotechnology, 2010, 10(1): 195-202. |
14 | YE L , CAO F , YING W , et al . Methanol conversion on SAPO-34 catalysts synthesized by tri-templates[J]. MRS Online Proceedings Library Archive, 2010, 1279. |
15 | LEE Y, BAEK K , JUN K . Methanol conversion on SAPO-34 catalysts prepared by mixed template method[J]. Applied Catalysis A: General, 2007, 329(10): 130-136. |
16 | WANG P , LV A , HU J , et al . The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction[J]. Microporous & Mesoporous Materials, 2012, 152(4): 178-184. |
17 | MASOUMI S , TOWFIGHI J , MOHAMADALIZADEH A , et al . Tri-templates synthesis of SAPO-34 and its performance in MTO reaction by statistical design of experiments[J]. Applied Catalysis A: General, 2015, 493:103-111. |
18 | 代跃利, 王磊, 刘德阳 . 用于催化甲醇制烯烃的SAPO-34分子筛合成的研究进展[J]. 化工进展, 2015, 34(3): 731-737. |
DAI Yueli , WANG Lei , LIU Deyang . Progress in the synthesis of SAPO-34 molecular sieve for the conversion of methanol to olefins[J]. Chemical Industry and Engineering Progress, 2015, 34(3): 731-737. | |
19 | CHAN W , MIAO Y , PENG T , et al . Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction[J]. Journal of Materials Chemistry A, 2015, 3(10): 5608-5616. |
20 | 何长青, 刘中民, 杨立新, 等 . 模板剂对SAPO-34分子筛晶粒尺寸和性能的影响[J]. 催化学报, 1995, 16(1): 33-37. |
HE Changqing , LIU Zhongmin , YANG Lixin , et al . Effect of template on crystallite size and properties of SAPO-34 molecular sieve[J]. Chinese Journal of Catalysis, 1995, 16(1): 33-37. | |
21 | QIN Z X , SHEN B J , YU Z W , et al . A defect-based strategy for the preparation of mesoporous zeolite Y for high-performance catalytic cracking[J]. Journal of Catalysis, 2013, 298(2): 102-111. |
22 | SCHUNK S A , DEMUTH D G , SCHULZ-DOBRICK B , et al . Element distribution and growth mechanism of large SAPO-5 crystals[J]. Microporous Materials, 1996, 6(5/6): 273-285. |
23 | SINHA A K , SEELAN S . Characterization of SAPO-11 and SAPO-31 synthesized from aqueous and non-aqueous media[J]. Applied Catalysis A: General, 2004, 270(1): 245-252. |
24 | TIAN P , LI B , XU S , et al . Investigation of the crystallization process of SAPO-35 and Si distribution in the crystals[J]. Journal of Physical Chemistry C, 2013, 117(8): 4048-4056. |
25 | AKOLEKAR D , BHARGAVA S , GORMAN J , et al . Formation of small pore SAPO-44 type molecular sieve[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 1999, 146(1/2/3): 375-386. |
26 | YANG M , TIAN P , WANG C , et al . A top-down approach to prepare silicoaluminophosphate molecular sieve nanocrystals with improved catalytic activity[J]. Chemical Communications, 2014, 50(15): 1845-1847. |
27 | TAN J , LIU Z , BAO X , et al . Crystallization and Si incorporation mechanisms of SAPO-34[J]. Microporous and Mesoporous Materials, 2002, 53(1-3): 97-108. |
28 | LEE K, LEE S, JUN Y, et al . Cooperative effects of zeolite mesoporosity and defect sites on the amount and location of coke formation and its consequence in deactivation[J]. Journal of Catalysis, 2017, 347: 222-230. |
29 | ZHENG J , DING J , JIN D , et al . The tailored synthesis of nanosized SAPO-34 via time-controlled silicon release enabled by an organosilane precursor[J]. Chemical Communications, 2017, 53(45): 6132-6135. |
30 | ASKARI S , HALLADJ R , SOHRABI M . Methanol conversion to light olefins over sonochemically prepared SAPO-34 nanocatalyst[J]. Microporous and Mesoporous Materials, 2012, 163(163):334-342. |
31 | KONG C , ZHU J , LIU S , et al . SAPO-34 with a low acidity outer layer by epitaxial growth and its improved MTO performance[J]. RSC Advances, 2017, 7(63): 39889-39898. |
[1] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[2] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[3] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[4] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[5] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[6] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[7] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[8] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[9] | WANG Shuaiqi, WANG Congxin, WANG Xuelin, TIAN Zhijian. Solvent-free rapid synthesis of ZSM-12 zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3561-3571. |
[10] | SUN Zhengnan, LI Hongjing, JING Guolin, ZHANG Funing, YAN Biao, LIU Xiaoyan. Application of EVA and its modified polymer in crude oil pour point depressant field [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2987-2998. |
[11] | YU Dingyi, LI Yuanyuan, WANG Chenyu, JI Yongsheng. Preparation of lignin-based pH responsive hydrogel and its application in controlled drug release [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3138-3146. |
[12] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
[13] | LU Shijian, ZHANG Yuanyuan, WU Wenhua, YANG Fei, LIU Ling, KANG Guojun, LI Qingfang, CHEN Hongfu, WANG Ning, WANG Feng, ZHANG Juanjuan. Health risk assessment of nitrosamine pollutant diffusion in a million ton CO2 capture project [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3209-3216. |
[14] | YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974. |
[15] | HE Chuan, WU Guoxun, LI Ang, ZHANG Fajie, BIAN Zijun, LU Chengzheng, WANG Lipeng, ZHAO Min. Characteristics of calcium and magnesium deactivation and regeneration of waste incineration SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2413-2420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |