Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (04): 1823-1832.DOI: 10.16085/j.issn.1000-6613.2018-1608
• Chemical processes and equipment • Previous Articles Next Articles
Daohong XIA(),Zunbin DUAN,Zunlong HU,Xunchun DING,Lijun ZHU,Yuzhi XIANG
Received:
2018-08-06
Revised:
2018-12-25
Online:
2019-04-05
Published:
2019-04-05
作者简介:
<named-content content-type="corresp-name">夏道宏</named-content>(1963—),男,教授,博士生导师。E-mail:<email>xiadh@upc.edu.cn</email>。
基金资助:
CLC Number:
Daohong XIA, Zunbin DUAN, Zunlong HU, Xunchun DING, Lijun ZHU, Yuzhi XIANG. Progress in preparation and application of β-cyclodextrin-graphene oxide supramolecular hybrid[J]. Chemical Industry and Engineering Progress, 2019, 38(04): 1823-1832.
夏道宏, 段尊斌, 胡尊龙, 丁雪春, 朱丽君, 项玉芝. β-环糊精-氧化石墨烯超分子杂化体的构筑及应用进展[J]. 化工进展, 2019, 38(04): 1823-1832.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1608
1 | DONG S , LUO Y , YAN X , et al . A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition[J]. Angewandte Chemie International Edition, 2011, 50(8): 1905-1909. |
2 | ALSBAIEE A , SMITH B J , XIAO L , et al .Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer[J]. Nature, 2015, 529(7585): 190-194. |
3 | XIAO L , LING Y , ALSBAIEE A , et al . β-Cyclodextrin polymer network sequesters perfluorooctanoic acid at environmentally relevant concentrations[J]. Journal of the American Chemical Society, 2017, 139(23): 7689-7692. |
4 | HU J , LIU S . Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications[J]. Accounts of Chemical Research, 2014, 47(7): 2084-2095. |
5 | YIN Z , WU Z , LIN F , et al . A supramolecular bottlebrush polymer assembled on the basis of cucurbit[8] uril-encapsulation-enhanced donor-acceptor interaction[J]. Chinese Chemical Letters, 2017, 28(6): 1167-1171. |
6 | QI Z , SCHALLEY C A . Exploring macrocycles in functional supramolecular gels:from stimuli responsiveness to systems chemistry[J]. Accounts of Chemical Research, 2014, 47(7): 2222-2233. |
7 | HARADA A , TAKASHIMA Y , YAMAGUCHI H . Cyclodextrin-based supramolecular polymers[J]. Chemical Society Reviews, 2009, 38(4): 875-882. |
8 | GUO Y , GUO S , REN J , et al . Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability:synthesis and host-guest inclusion for enhanced electrochemical performance[J]. ACS Nano, 2010, 4(7): 4001-4010. |
9 | ZHANG W , LIN M , WANG M , et al . Magnetic porous β-cyclodextrin polymer for magnetic solid-phase extraction of microcystins from environmental water samples[J]. Journal of Chromatography A, 2017, 1503: 1-11. |
10 | CHALASANI R , VASUDEVAN S . Cyclodextrin-functionalized Fe3O4@TiO2:reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies[J]. ACS Nano, 2013, 7(5): 4093-4104. |
11 | BARUAH U , GOGOI N , MAJUMDAR G , et al . β-Cyclodextrin and calix[4] are ne-25,26,27,28-tetrol capped carbon dots for selective and sensitive detection of fluoride[J]. Carbohydrate Polymers, 2015, 117:377-383. |
12 | WAYU M B , DIPASQUALE L T , SCHWARZMANN M A , et al . Electropolymerization of β-cyclodextrin onto multi-walled carbon nanotube composite films for enhanced selective detection of uric acid[J]. Journal of Electroanalytical Chemistry, 2016, 783:192-200. |
13 | GEIM A K . Graphene:status and prospects[J]. Science, 2009, 324(5934): 1530-1534. |
14 | 孙涛, 李建业, 郝爱友 . 环糊精-石墨烯超分子体系[J]. 有机化学, 2012(11): 2054-2062. |
SUN T , LI J Y , HAO A Y . Cyclodextrin-graphene supramolecular system[J]. Chinese Journal of Organic Chemistry, 2012(11): 2054-2062. | |
15 | TAN J , MENG N , FAN Y , et al . Hydroxypropyl-β-cyclodextrin-graphene oxide conjugates:carriers for anti-cancer drugs[J]. Materials Science and Engineering:C, 2016, 61: 681-687. |
16 | XU C , WANG J , WAN L , et al . Microwave-assisted covalent modification of graphene nanosheets with hydroxypropyl-β-cyclodextrin and its electrochemical detection of phenolic organic pollutants[J]. Journal of Materials Chemistry, 2011, 21(28): 10463-10471. |
17 | WU H , PENG J , WANG S , et al . Fabrication of graphene oxide-β-cyclodextrin nanoparticle releasing doxorubicin and topotecan for combination chemotherapy[J]. Materials Technology, 2015, 30(5): 242-249. |
18 | YAN J , LI X , QIU F , et al . Synthesis of beta-cyclodextrin-chitosan-graphene oxide composite and its application for adsorption of manganese ion(Ⅱ)[J]. Materials Technology, 2016, 31(7): 406-415. |
19 | HOU X , LU X , NIU P , et al . β-Cyclodextrin-modified three-dimensional graphene oxide-wrapped melamine foam for the solid-phase extraction of flavonoids[J]. Journal of Separation Science, 2018, 41(10): 2207-2213. |
20 | YU Z , CHEN Q , LV L , et al . Attached β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane to graphene oxide and its application in copper removal[J]. Water Science and Technology, 2017, 75(10): 2403-2411. |
21 | MOURYA V K , INAMDAR N N . Chitosan-modifications and applications: opportunities galore[J]. Reactive and Functional Polymers, 2008, 68(6): 1013-1051. |
22 | CROFT A P , BARTSCH R A . Synthesis of chemically modified cyclodextrins[J]. Tetrahedron, 1983, 39(9): 1417-1474. |
23 | KHAN A R , FORGO P , STINE K J , et al . Methods for selective modifications of cyclodextrins[J]. Chemical Reviews, 1998, 98(5): 1977-1996. |
24 | LI Y , GAO Y , LI Y , et al . A novel fluorescence probing strategy based on mono-[6-(2-aminoethylamino)-6-deoxy]-β-cyclodextin functionalized graphene oxide for the detection of amantadine[J]. Sensors and Actuators B: Chemical, 2014, 202: 323-329. |
25 | YANG L , ZHAO H , LI Y , et al . Electrochemical simultaneous determination of hydroquinone and p-nitrophenol based on host-guest molecular recognition capability of dual β-cyclodextrin functionalized Au@graphene nanohybrids[J]. Sensors and Actuators B: Chemical, 2015, 207: 1-8. |
26 | XU C , WANG X , WANG J , et al . Synthesis and photoelectrical properties of β-cyclodextrin functionalized graphene materials with high bio-recognition capability[J]. Chemical Physics Letters, 2010, 498(1-3): 162-167. |
27 | SEDGHI R , HEIDARI B , YASSARI M . Novel molecularly imprinted polymer based on β-cyclodextrin@graphene oxide: synthesis and application for selective diphenylamine determination[J]. Journal of Colloid and Interface Science, 2017, 503: 47-56. |
28 | WANG S , LI Y , FAN X , et al . β-cyclodextrin functionalized graphene oxide: an efficient and recyclable adsorbent for the removal of dye pollutants[J]. Frontiers of Chemical Science and Engineering, 2015, 9(1): 77-83. |
29 | YUAN J , QIU F , LI P . Synthesis and characterization of β-cyclodextrin-carboxymethyl cellulose-graphene oxide composite materials and its application for removal of basic fuchsin[J]. Journal of the Iranian Chemical Society, 2017, 14(9): 1827-1837. |
30 | ZHONG Y , HE Y , GE Y , et al . β-Cyclodextrin protected Cu nanoclusters as a novel fluorescence sensor for graphene oxide in environmental water samples[J]. Luminescence, 2017, 32(4): 596-601. |
31 | OGOSHI T , ICHIHARA Y , YAMAGISHI T , et al . Supramolecular polymer networks from hybrid between graphene oxide and per-6-amino-β-cyclodextrin[J]. Chemical Communications, 2010, 46(33): 6087-6089. |
32 | TAN L , WANG G , CHEN N , et al . Layer-by-layer assembled multilayers of graphene/mono-(6-amino-6-deoxy)-β-cyclodextrin for detection of dopamine[J]. Chinese Journal of Chemistry, 2015, 33(2): 185-191. |
33 | ZHU G , ZHANG X , GAI P , et al . Enhanced electrochemical sensing for persistent organic pollutants by nanohybrids of graphene nanosheets that are noncovalently functionalized with cyclodextrin[J]. ChemPlusChem, 2012, 77(9): 844-849. |
34 | YANG Y , ZHANG Y , CHEN Y , et al . Construction of a graphene oxide based noncovalent multiple nanosupramolecular assembly as a scaffold for drug delivery[J]. Chemistry—A European Journal, 2012, 18(14): 4208-4215. |
35 | WU Y , QI H , SHI C , et al . Preparation and adsorption behaviors of sodium alginate-based adsorbent-immobilized beta-cyclodextrin and graphene oxide[J]. RSC Advances, 2017, 7(50): 31549-31557. |
36 | LIU Y , HUANG S , ZHAO X , et al . Fabrication of three-dimensional porous β-cyclodextrin/chitosan functionalized graphene oxide hydrogel for methylene blue removal from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539: 1-10. |
37 | FAN L , LUO C , SUN M , et al . Synthesis of magnetic β-cyclodextrin-chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal[J]. Colloids and Surfaces B: Biointerfaces, 2013, 103: 601-607. |
38 | LI L , FAN L , DUAN H , et al . Magnetically separable functionalized graphene oxide decorated with magnetic cyclodextrin as an excellent adsorbent for dye removal[J]. RSC Advances, 2014, 4(70): 37114-37121. |
39 | CAO X T , SHOWKAT A M , KANG I , et al . β-Cyclodextrin multi-conjugated magnetic graphene oxide as a nano-adsorbent for methylene blue removal[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(2): 1521-1525. |
40 | FAN L , LUO C , SUN M , et al . Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal[J]. Journal of Materials Chemistry, 2012, 22(47): 24577-24583. |
41 | LI L , FAN L , SUN M , et al . Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan[J]. Colloids and Surfaces B: Biointerfaces, 2013, 107: 76-83. |
42 | WANG H , LIU Y G , ZENG G M , et al . Grafting of beta-cyclodextrin to magnetic graphene oxide via ethylenediamine and application for Cr(Ⅵ) removal[J]. Carbohydrate Polymers, 2014, 113: 166-173. |
43 | LIU Y , LI M , HE C . Removal of Cr(Ⅵ) and Hg(Ⅱ) ions from wastewater by novel β-CD/MGO-SO3H composite[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 512: 129-136. |
44 | HU X , LIU Y , WANG H , et al . Adsorption of copper by magnetic graphene oxide-supported β-cyclodextrin: effects of pH, ionic strength, background electrolytes, and citric acid[J]. Chemical Engineering Research and Design, 2015, 93: 675-683. |
45 | CUI L , WANG Y , GAO L , et al . Removal of Hg(Ⅱ) from aqueous solution by resin loaded magnetic β-cyclodextrin bead and graphene oxide sheet: synthesis, adsorption mechanism and separation properties[J]. Journal of Colloid and Interface Science, 2015, 456: 42-49. |
46 | SONG W , HU J , ZHAO Y , et al . Efficient removal of cobalt from aqueous solution using beta-cyclodextrin modified graphene oxide[J]. RSC Advances, 2013, 3(24): 9514-9521. |
47 | SONG W , SHAO D , LU S , et al . Simultaneous removal of uranium and humic acid by cyclodextrin modified graphene oxide nanosheets[J]. Science China Chemistry, 2014, 57(9): 1291-1299. |
48 | KUMAR A S K , JIANG S . Synthesis of magnetically separable and recyclable magnetic nanoparticles decorated with beta-cyclodextrin functionalized graphene oxide an excellent adsorption of As(Ⅴ)/(Ⅲ)[J]. Journal of Molecular Liquids, 2017, 237: 387-401. |
49 | ZHU G , YI Y , CHEN J . Recent advances for cyclodextrin-based materials in electrochemical sensing[J]. TrAC Trends in Analytical Chemistry, 2016, 80: 232-241. |
50 |
LIU J , CHEN Y , GUO Y , et al . Electrochemical sensor for o-nitrophenol based on β-cyclodextrin functionalized graphene nanosheets[J]. Journal of Nanomaterials, 2013. DOI: 10.1155/2013/632809.
DOI URL |
51 | LIU W , LI C , GU Y , et al . One-step synthesis of beta-cyclodextrin functionalized graphene/Ag nanocomposite and its application in sensitive determination of 4-nitrophenol[J]. Electroanalysis, 2013, 25(10): 2367-2376. |
52 | FENG W , LIU C , LU S , et al . Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene[J]. Microchimica Acta, 2014, 181(5/6): 501-509. |
53 | WANG C , LI T , LIU Z , et al . An ultra-sensitive sensor based on β-cyclodextrin modified magnetic graphene oxide for detection of tryptophan[J]. Journal of Electroanalytical Chemistry, 2016, 781: 363-370. |
54 | XU J , WANG Q , XUAN C , et al . Chiral recognition of tryptophan enantiomers based on β-cyclodextrin-platinum nanoparticles/graphene nanohybrids modified electrode[J]. Electroanalysis, 2016, 28(4): 868-873. |
55 | GUO Y , GUO S , REN J , et al . Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host-guest inclusion for enhanced electrochemical performance[J]. ACS Nano, 2010, 4(7): 4001-4010. |
56 | PUTTA C , SHARAVATH V , SARKAR S , et al . Palladium nanoparticles on β-cyclodextrin functionalised graphene nanosheets: a supramolecular based heterogeneous catalyst for C—C coupling reactions under green reaction conditions[J]. RSC Advances, 2015, 5(9): 6652-6660. |
57 | LI Z , ZHANG L , HUANG X , et al . Shape-controlled synthesis of Pt nanoparticles via integration of graphene and β-cyclodextrin and using as a noval electrocatalyst for methanol oxidation[J]. Electrochimica Acta, 2014, 121: 215-222. |
58 | RAN X , YANG L , QU Q , et al . Synthesis of well-dispersive 2.0 nm Pd-Pt bimetallic nanoclusters supported on β-cyclodextrin functionalized graphene with excellent electrocatalytic activity[J]. RSC Advances, 2017, 7(4): 1947-1955. |
59 | YEE E M H, HOOK J M , BHADBHADE M M , et al .Preparation, characterization and in vitro biological evaluation of (1:2) phenoxodiol-beta-cyclodextrin complex[J]. Carbohydrate Polymers, 2017, 165: 444-454. |
60 | SZEJTLI J . Introduction and general overview of cyclodextrin chemistry[J]. Chemical Reviews, 1998, 98(5): 1743-1754. |
61 | ZHU Y , MURALI S , CAI W , et al . Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924. |
62 | XIAO Y , FAN Y , WANG W , et al . Novel GO-COO-beta-CD/CA inclusion: its blood compatibility, antibacterial property and drug delivery[J]. Drug Delivery, 2014, 21(5): 362-369. |
63 | WANG C , LI B , NIU W , et al . β-Cyclodextrin modified graphene oxide-magnetic nanocomposite for targeted delivery and pH-sensitive release of stereoisomeric anti-cancer drugs[J]. RSC Advances, 2015, 5(108): 89299-89308. |
64 | MENG N , SU Y , ZHOU N , et al . Carboxylated graphene oxide functionalized with β-cyclodextrin-engineering of a novel nanohybrid drug carrier[J]. International Journal of Biological Macromolecules, 2016, 93: 117-122. |
65 | SIRIVIRIYANUN A , TSAI Y , VOON S H , et al . Cyclodextrin-and dendrimer-conjugated graphene oxide as a nanocarrier for the delivery of selected chemotherapeutic and photosensitizing agents[J]. Materials Science and Engineering C, 2018, 89: 307-315. |
66 | GAO Y , JIAO T , MA K, et al . Variable self-assembly and in situ host-guest reaction of beta-cyclodextrin-modified graphene oxide composite Langmuir films with azobenzene compounds[J]. RSC Advances, 2017, 7(65): 41043-41051. |
67 | DONG H , LI Y , YU J , et al . A versatile multicomponent assembly via β-cyclodextrin host-guest chemistry on graphene for biomedical applications[J]. Small, 2013, 9(3): 446-456. |
68 | HOU X , WANG L , TANG X , et al . Application of a beta-cyclodextrin/graphene oxide-modified fiber for solid-phase microextraction of six fragrance allergens in personal products[J]. Analyst, 2015, 140(19): 6727-6735. |
69 | LIANG R , LIU C , MENG X , et al . A novel open-tubular capillary electrochromatography using β-cyclodextrin functionalized graphene oxide-magnetic nanocomposites as tunable stationary phase[J]. Journal of Chromatography A, 2012, 1266: 95-102. |
70 | HOU X , LU X , NIU P , et al . β-Cyclodextrin-modified three-dimensional graphene oxide-wrapped melamine foam for the solid-phase extraction of flavonoids[J]. Journal of Separation Science, 2018, 41(10): 2207-2213. |
71 | 张树鹏, 宋海欧 . 氧化石墨烯/β-环糊精超分子杂化体的制备及表征[J]. 无机材料学报, 2012, 27(6): 596-602. |
ZHANG S P , SONG H O . Preparation and characterization of graphene oxide/β-cyclodextrin supramolecular hybrid material[J]. Journal of Inorganic Materials, 2012, 27(6): 596-602. | |
72 | 沈海民, 武宏科, 纪红兵, 等 . β-环糊精-Fe3O4超分子体系的构筑及其应用研究进展[J]. 有机化学, 2014, 34(4): 630-646. |
SHEN H M , WU H K , JI H B , et al . Progress in the construction of β-cyclodextrin-Fe3O4 supramolecular systems and their application[J]. Chinese Journal of Organic Chemistry, 2014, 34(4): 630-646. | |
73 | SUN Y , XIA D , XIANG Y . A novel method for removing sulfur compounds from light oil by molecular recognition with beta-cyclodextrin[J]. Petroleum Science and Technology, 2008, 26(17): 2023-2032. |
74 | LI L , DUAN Z , CHEN J , et al . Molecular recognition with cyclodextrin polymer: a novel method for removing sulfides efficiently[J]. RSC Advances, 2017, 7(62): 38902-38910. |
75 | 夏道宏, 段尊斌, 卜婷婷, 等 . 一种基于超分子包合作用的轻质油品脱硫剂及其使用方法: CN105126768A[P]. 2015-12-09. |
XIA D H , DUAN Z B , BU T T , et al . Light oil desulfurization agent based on supramolecular inclusion and its using method: CN105126768A[P]. 2015-12-09. | |
76 | 夏道宏, 卜婷婷, 段尊斌, 等 . 一种利用超分子包合作用的燃料油品脱氮剂及其使用方法: CN105087050A[P]. 2015-11-25. |
XIA D H , BU T T , DUAN Z B , et al . Fuel oil denitrification agent utilizing supramolecular inclusion and its using method: CN105087050A[P]. 2015-11-25. | |
77 | DUAN Z , BU T , BIAN H , et al . Effective removal of phenylamine, quinoline, and indole from light oil by β-cyclodextrin aqueous solution through molecular inclusion[J]. Energy & fuels, 2018, 32(9): 9280-9288. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[3] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[4] | ZHANG Jie, BAI Zhongbo, FENG Baoxin, PENG Xiaolin, REN Weiwei, ZHANG Jingli, LIU Eryong. Effect of PEG and its compound additives on post-treatment of electrolytic copper foils [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 374-381. |
[5] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[8] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[9] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[10] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[11] | WANG Qi, KOU Lihong, WANG Guanyu, WANG Jikun, LIU Min, LI Lanting, WANG Hao. Molecular recognition of dissolved organic matter in bio-treated effluent of coking wastewater [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4984-4993. |
[12] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[13] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[14] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[15] | ZHANG Yajuan, XU Hui, HU Bei, SHI Xingwei. Preparation of NiCoP/rGO/NF electrocatalyst by eletroless plating for efficient hydrogen evolution reaction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4275-4282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |