Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 598-605.DOI: 10.16085/j.issn.1000-6613.2018-1138
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
Pengcheng CHANG(),Yang YU,Ying WANG,Chun LI()
Received:
2018-05-31
Revised:
2018-07-01
Online:
2019-01-05
Published:
2019-01-05
Contact:
Chun LI
通讯作者:
李春
作者简介:
常鹏程(1993—),男,硕士研究生,研究方向为代谢工程与合成生物学。E-mail:<email>changpengcheng301@163.com</email>。|李春,教授,博士生导师,研究方向生物转化与酶工程、代谢工程与合成生物学。E-mail:<email>lichun@bit.edu.cn</email>。
基金资助:
CLC Number:
Pengcheng CHANG, Yang YU, Ying WANG, Chun LI. Combinatorial regulation strategies for efficient synthesis of terpenoids in Saccharomyces cerevisiae[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 598-605.
常鹏程, 于洋, 王颖, 李春. 酿酒酵母高效合成萜类化合物的组合调控策略[J]. 化工进展, 2019, 38(01): 598-605.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1138
萜类 | 合成量 | 萜类 | 合成量 |
---|---|---|---|
牻牛儿醇 | 36.04[ | 铁锈醇 | 10[ |
椒二醇 | 50[ | β-香树脂醇 | 138.80[ |
紫衫二烯 | 8.7[ | 甘草次酸 | 18.9[ |
次丹参酮二烯 | 488mg/L[ | 齐敦果酸 | 606.9mg/L[ |
萜类 | 合成量 | 萜类 | 合成量 |
---|---|---|---|
牻牛儿醇 | 36.04[ | 铁锈醇 | 10[ |
椒二醇 | 50[ | β-香树脂醇 | 138.80[ |
紫衫二烯 | 8.7[ | 甘草次酸 | 18.9[ |
次丹参酮二烯 | 488mg/L[ | 齐敦果酸 | 606.9mg/L[ |
1 | PEMBERTON T A , CHEN M B , HARRIS G G , et al .Exploring the influence of domain architecture on the catalytic function of diterpene synthases[J].Biochemistry, 2017, 56(14): 2010-2023. |
2 | VANEGAS K G , LEHKA B J , MORTENSEN U H .SWITCH:a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae [J].Microbial Cell Factories, 2017, 16(1): 25. |
3 | ALPER H , MIYAOKU K , STEPHANOPOULOS G .Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets[J].Nature Biotechnology, 2005, 23(5): 612-616. |
4 | ZHAO Y J , FAN J J , WANG C , et al . Enhancing oleanolic acid production in engineered Saccharomyces cerevisiae [J].Bioresource Technology, 2018, 257:339-343. |
5 | KIM K A , LEE J S , PARK H J , et al .Inhibition of cytochrome P450 activities by oleanolic acid and ursolic acid in human liver microsomes[J].Life Sciences, 2004, 74(22): 2769-2779. |
6 | 朱明, 王彩霞, 李春 . 工程化酿酒酵母合成植物三萜类化合物[J]. 化工学报, 2015, 66(9): 3350-3356. |
ZHU M , WANG C X , LI C . Engineered Saccharomyces cerevisiae for biosynthesis of plant triterpenoids[J]. CIESC Journal, 2015, 66(9): 3350-3356. | |
7 | CHAN W K , TAN L T H , CHAN K G , et al . Nerolidol: a sesquiterpene alcohol with multi-faceted pharmacological and biological activities[J]. Molecules, 2016, 21(5): 529. |
8 | HU G Y , PENG C , XIE X F , et al . Availability, pharmaceutics, security, pharmacokinetics, and pharmacological activities of patchouli alcohol[J]. Evidence-Based Complementary and Alternative Medicine, 2017(4): 1-9. |
9 | PADDON C J , WESTFALL P J , PITERA D J , et al . High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013, 496(7446): 528-532. |
10 | LIU J D , ZHANG W P , DU G C , et al . Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae [J]. Journal of Biotechnology, 2013, 168(4): 446-451. |
11 | TAKAHASHI S , YEO Y , GREENHAGEN B T , et al . Metabolic engineering of sesquiterpene metabolism in yeast[J]. Biotechnology and Bioengineering, 2007, 97(1): 170-181. |
12 | ENGELS B , DAHM P , JENNEWEIN S . Metabolic engineering of taxadiene biosynthesis in yeast as a first step towards Taxol (Paclitaxel) production[J]. Metabolic Engineering, 2008, 10(3/4): 201-206. |
13 | DAI Z B , LIU Y , HUANG L Q , et al . Production of miltiradiene by metabolically engineered Saccharomyces cerevisiae [J]. Biotechnology and Bioengineering, 2012, 109(11): 2845–2853. |
14 | GUO J , ZHOU Y J , HILLWIG M L , et al . CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts[J]. Proceedings of the National Academy of Sciences, 2013, 110(29): 12108-12113. |
15 | ZHANG G L , CAO Q , LIU J Z , et al . Refactoring β-amyrin synthesis in Saccharomyces cerevisiae [J]. AIChE Journal, 2015, 61(10): 3172-3179. |
16 | ZHU M , WANG C X , SUN W T , et al . Boosting 11-oxo-β-amyrin and glycyrrhetinic acid synthesis in Saccharomyces cerevisiae via pairing novel oxidation and reduction system from legume plants[J]. Metabolic Engineering, 2018, 45:43-50. |
17 | CHEN Y , XIAO W H , WANG Y , et al . Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering[J]. Microbial Cell Factories, 2016, 15(1): 113. |
18 | BOHLMANN J , MEYER-GAUEN G , CROTEAU R . Plant terpenoid synthases: molecular biology and phylogenetic analysis[J]. Proceedings of the National Academy of Sciences, 1998, 95(8): 4126-4133. |
19 | ZHAO J Z , BAO X M , LI C , et al . Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae [J]. Applied Microbiology and Biotechnology, 2016, 100(10): 4561-4571. |
20 | JIANG G Z , YAO M D , WANG Y , et al . Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2017, 41:57-66. |
21 | SCHMIDT-DANNERT C , ARNOLD F H . Directed evolution of industrial enzymes[J]. Trends in Biotechnology, 1999, 17(4): 135-136. |
22 | XIE W P , LV X M , YE L D , et al . Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering[J]. Metabolic Engineering, 2015, 30:69-78. |
23 | WANG F , LV X M , XIE W P , et al . Combining Gal4p-mediated expression enhancement and directed evolution of isoprene synthase to improve isoprene production in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2016, 39:257-266. |
24 | ZHUANG Y , YANG G Y , CHEN X H , et al . Biosynthesis of plant-derived ginsenoside Rh2 in yeast via repurposing a key promiscuous microbial enzyme[J]. Metabolic Engineering, 2017, 42:25-32. |
25 | DING M Z , YAN H F , LI L F , et al . Biosynthesis of taxadiene in Saccharomyces cerevisiae:selection of geranylgeranyl diphosphate synthase directed by a computer-aided docking strategy[J]. PLoS One, 2014, 9(10): e109348. |
26 | LISCUM L , FINERMOORE J , STROUD R M , et al . Domain structure of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a glycoprotein of the endoplasmic reticulum[J]. Journal of Biological Chemistry, 1985, 260(1): 522-530. |
27 | BASSON M E , THORSNESS M , FINER-MOORE J , et al . Structural and functional conservation between yeast and human 3-hydroxy-3-methylglutaryl coenzyme A reductases, the rate-limiting enzyme of sterol biosynthesis[J]. Molecular and Cellular Biology., 1988, 8(9): 3797-3808. |
28 | POLAKOWSKI T , STAHL U , LANG C . Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast [J]. Applied Microbiology and Biotechnology, 1998, 49(1): 66-71. |
29 | KEASLING J D . Synthetic biology and the development of tools for metabolic engineering[J]. Metabolic Engineering, 2012, 14(3): 189-195. |
30 | MANTZOURIDOU F , TSIMIDOU M Z . Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6[J]. FEMS Yeast Research, 2010, 10(6): 699-707. |
31 | LIAN J Z , SI T , NAIR N U , et al . Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains[J]. Metabolic Engineering, 2014, 24(7): 139-149. |
32 | CHEN Y , DAVIET L , SCHALK M , et al . Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism[J]. Metabolic Engineering, 2013, 15(1): 48-54. |
33 | FARHI M , MARHEVKA E , MASCI T , et al . Harnessing yeast subcellular compartments for the production of plant terpenoids[J]. Metabolic Engineering, 2011, 13(5): 474-481. |
34 | YUAN J F , CHING C B . Mitochondrial acetyl-CoA utilization pathway for terpenoid productions[J]. Metabolic Engineering, 2016, 38:303-309. |
35 | LV X M , WANG F , ZHOU P P , et al . Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae [J]. Nature Communications, 2016, 7:12851. |
36 | ARENDT P , MIETTINEN K , POLLIER J , et al . An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids[J]. Metabolic Engineering, 2017, 40:165-175. |
37 | ASADOLLAHI M A , MAURY J , MøLLER K , et al . Production of plant sesquiterpenes in Saccharomyces cerevisiae:effect of ERG9 repression on sesquiterpene biosynthesis[J]. Biotechnology and Bioengineering, 2008, 99(3): 666-677. |
38 | SCALCINATI G , PARTOW S , SIEWERS V , et al . Combined metabolic engineering of precursor and co-factor supply to increase α santalene production by Saccharomyces cerevisiae [J]. Microbial Cell Factories, 2012, 11(1): 117. |
39 | PENG B Y , PLAN M R , CHRYSANTHOPOULOS P , et al . A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2016, 39:209-219. |
40 | CONG L , RAN F A , COX D , et al . Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. |
41 | JAKOČIŪNAS T , BONDE I , HERRGåRD M , et al . Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2015, 28:213-222. |
42 | SHI S B , LIANG Y Y , ZHANG M M , et al . A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae [J]. Metabolic Engineering, 2016, 33:19-27. |
43 | BARBIERI E M , MUIR P , AKHUETIE-ONI B O , et al . Precise editing at DNA replication forks enables multiplex genome engineering in eukaryotes [J]. Cell, 2017, 171(6): 1453-1467. |
44 | ZALATAN J G , LEE M E , ALMEIDA R , et al . Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J]. Cell, 2015, 160(1/2): 339-350. |
45 | GILBERT L A , LARSON M H , MORSUT L , et al . CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes[J]. Cell, 2013, 154(2): 442-451. |
46 | LIAN J Z , HAMEDIRAD M , HU S , et al . Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system[J]. Nature Communications, 2017, 8(1): 1688. |
47 | DYMOND J S , RICHARDSON S M , COOMBES C E , et al . Synthetic chromosome arms function in yeast and generate phenotypic diversity by design [J]. Nature, 2011, 477(7365): 471-476. |
48 | SHEN Y , WANG Y , CHEN T , et al . Deep functional analysis of synII, a770 kb synthetic yeast chromosome[J]. Science, 2017, 355(6329): eaaf4791. |
49 | XIE Z X , LI B Z , MITCHELL L A , et al . "Perfect" designer chromosome V and behavior of a ring derivative[J]. Science, 2017, 355(6329): eaaf4704. |
50 | MITCHELL L A , WANG A , STRACQUADANIO G , et al . Synthesis, debugging, and effects of synthetic chromosome consolidation:synⅥ and beyond[J]. Science, 2017, 355(6329): eaaf4831. |
51 | WU Y , LI B Z , ZHAO M , et al . Bug mapping and fitness testing of chemically synthesized chromosome X[J]. Science, 2017, 355(6329): eaaf4706. |
52 | ZHANG W M , ZHAO G H , LUO Z Q , et al . Engineering the ribosomal DNA in a megabase synthetic chromosome[J]. Science, 2017, 355(6329): eaaf3981. |
53 | ANNALURU N , MULLER H , MITCHELL L A , et al . Total synthesis of a functional designer eukaryotic chromosome[J]. Science, 2014, 344(6179): 55-58. |
54 | WU Y , ZHU R Y , MITCHELL L A , et al . In vitro DNA SCRaMbLE[J]. Nature Communications, 2018, 9(1): 1935. |
55 | SHEN M J , WU Y , YANG K , et al . Heterozygous diploid and interspecies SCRaMbLEing[J]. Nature Communications, 2018, 9(1): 1934. |
56 | LIU W , LUO Z Q , WANG Y , et al . Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods [J]. Nature Communications, 2018, 9(1): 1936. |
57 | JIA B , WU Y , LI B Z , et al . Precise control of SCRaMbLE in synthetic haploid and diploid yeast[J]. Nature Communications, 2018, 9(1): 1933. |
[1] | TAO Yuxuan, GUO Liang, GAO Cong, SONG Wei, CHEN Xiulai. Progress in metabolic engineering of microorganisms for CO2 fixation [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 40-52. |
[2] | GUO Feng, ZHANG Shangjie, JIANG Yujia, JIANG Wankui, XIN Fengxue, ZHANG Wenming, JIANG Min. Biotransformation of one-carbon resources by yeast [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 30-39. |
[3] | DONG Xiaoyu. Preparation and identification of monoclonal antibodies of calcium channel membrane proteins in Saccharomyces cerevisiae [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 334-343. |
[4] | TAO Yuxuan, ZHANG Shangjie, JING Yiwen, XIN Fengxue, DONG Weiliang, ZHOU Jie, JIANG Yujia, ZHANG Wenming, JIANG Min. Recent advances in the construction strategy of methylotrophic Escherichia coli [J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3932-3941. |
[5] | LI Ling, YU Yong, HU Yonghong. Research progress in production of lipstatinfermentation [J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2251-2257. |
[6] | GUO Liang, GAO Cong, ZHANG Li, CHEN Xiulai, LIU Liming. Advances in the suitability of artificial metabolic pathways [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1252-1261. |
[7] | WANG Ying, QU Junze, LIANG Nan, HAO He, YUAN Yingjin. Rapid construction and directed evolution of cell factories for carotenoid biosynthesis [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1187-1201. |
[8] | ZHOU Zikang, XU Ping. Application and progress of global transcription regulation in microbial cell factory construction [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1248-1251. |
[9] | LIU Weibing, YE Bangce. Progress of synthetic biology research and biological manufacturing of actinomycetes polyketides [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1226-1237. |
[10] | MA Yueyuan, CHEN Jinchun, CHEN Guoqiang. Halophilic microorganisms as microbial chassis: applications and prospects [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1178-1186. |
[11] | SUN Wentao, LI Chun. Design and construction of microbial cell factory for biosynthesis of plant natural products [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1202-1214. |
[12] | GAO Cong, GUO Liang, HU Guipeng, CHEN Xiulai, LIU Liming. Advances of metabolic flux regulation in microbial cell factories [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6807-6817. |
[13] | Chen WANG, Meng ZHAO, Mingzhu DING, Ying WANG, Mingdong YAO, Wenhai XIAO. Application of biological scaffold system on synthetic biology [J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4557-4567. |
[14] | Lu CHEN,Dingyu LIU,Baowei WANG,Yu jiao ZHAO,Guangtao JIA,Tao CHEN,Zhiwen WANG. Advances in acetyl coenzyme A metabolic engineering with Escherichia coli [J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4218-4226. |
[15] | CHENG Shen, ZHANG Songhong, YUN Junxian. Recent advances in microbial synthesis of α-ketoisocaproate [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4821-4829. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |