Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 606-614.DOI: 10.16085/j.issn.1000-6613.2018-1136
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
Tian JIANG1(),Xudong FENG2,Yan LI1,Chu LI1,2()
Received:
2018-05-31
Revised:
2018-08-23
Online:
2019-01-05
Published:
2019-01-05
Contact:
Chu LI
通讯作者:
李春
作者简介:
姜恬(1993—),女,硕士研究生,研究方向为酶工程。E-mail:<email>jiangtiantian1002@163.com</email>。|李春,教授,博士生导师,研究方向为生物催化与酶工程、代谢工程与合成生物学。E-mail:<email>lichun@bit.edu.cn</email>。
基金资助:
CLC Number:
Tian JIANG, Xudong FENG, Yan LI, Chu LI. The biocatalysis and enzyme modification of substrate specificity[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 606-614.
姜恬, 冯旭东, 李岩, 李春. 底物特异性的生物催化与酶设计改造[J]. 化工进展, 2019, 38(01): 606-614.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1136
问题 | 后果 |
---|---|
酶的不足 | 稳定性差,底物特异性差 |
工艺限制 | 高温发酵受限,产物不单一 |
应用限制 | 染菌风险大,产物分离纯化困难 |
问题 | 后果 |
---|---|
酶的不足 | 稳定性差,底物特异性差 |
工艺限制 | 高温发酵受限,产物不单一 |
应用限制 | 染菌风险大,产物分离纯化困难 |
1 | SCHMID A , DORDICK J S , HAUER B , et al . Industrial biocatalysis today and tomorrow[J]. Nature, 2001, 409(6817): 258-268. |
2 | BORNSCHEUER U T , HUISMAN G W , KAZLAUSKAS R J , et al . Engineering the third wave of biocatalysis[J]. Nature, 2012, 485(7397): 185-194. |
3 | 许可, 吕波,李春 . 无细胞的合成生物技术——多酶催化与生物合成[J]. 中国科学: 化学, 2015, 45(5): 429-437. |
XU K , LV B , LI C . Cell-free synthetic biotechnology—multi-enzyme catalysis and biosynthesis[J]. Scientia Sinica: Chimica, 2015, 45(5): 429-437. | |
4 | SHELDON R A , WOODLEY J M . Role of biocatalysis in sustainable chemistry[J]. Chemical Reviews, 2018, 118(2): 801-838. |
5 | 王景昌, 商雪航, 王卫京, 等 . 酶催化合成脂肪族聚酯的研究进展[J]. 化工进展, 2017, 36(7): 2592-2600. |
WANG J C , SHANG X H , WANG W J , et al . Review on enzymatic synthesis of aliphatic polyester[J]. Chemical Industry and Engineering Progress, 2017, 36(7): 2592-2600. | |
6 | THOMAS S M , DICOSIMO R , NAGARAJAN V . Biocatalysis: applications and potentials for the chemical industry[J]. Trends in Biotechnology, 2002, 20(6): 238-242. |
7 | 欧阳平凯,冯娇,许晟 . 生物制造研究进展[J]. 广西科学, 2016, 23(2): 97-101. |
OUYANG P K , FENG J , XU S , et al . Recent advances in biological manufacturing[J]. Guangxi Sciences, 2016, 23(2):97-101. | |
8 | 刘大江, 裘建龙 . 精细化工产品的技术改造及开发策略探析[J]. 当代化工研究, 2017(3): 1-2. |
LIU D J , QIU J L . Analysis of the technical reform and development strategies for fine chemical engineering products[J]. Modern Chemical Research, 2017(3): 1-2. | |
9 | STRAATHOF A J , PANKE S , SCHMID A . The production of fine chemicals by biotransformations[J]. Curr. Opin. Biotechnol., 2002, 13(6): 548-556. |
10 | BEZBRADICA D , COROVIC M , TANASKOVIC S J , et al . Enzymatic syntheses of esters-green chemistry for valuable food, fuel and fine chemicals[J]. Current Organic Chemistry, 2017, 21(2): 104-138. |
11 | REETZ M T , PRASAD S , CARBALLEIRA J D , et al . Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods[J]. Journal of the American Chemical Society, 2010, 132(26): 9144. |
12 | LEE E Y , YOO S S , KIM H S , et al . Production of (S)-styrene oxide by recombinant Pichia pastoris containing epoxide hydrolase from Rhodotorula glutinis [J]. Enzyme and Microbial Technology, 2004, 35(6-7): 624-631. |
13 | YOO S S , PARK S , LEE E Y . Enantioselective resolution of racemic styrene oxide at high concentration using recombinant Pichia pastoris expressing epoxide hydrolase of Rhodotorula glutinis in the presence of surfactant and glycerol[J]. Biotechnology Letters, 2008, 30(10): 1807-1810. |
14 | MONTERDE M I , LOMBARD M , ARCHELAS A , et al . Enzymatic transformations. Part 58: Enantioconvergent biohydrolysis of styrene oxide derivatives catalysed by the Solanum tuberosum epoxide hydrolase[J]. Tetrahedron: Asymmetry, 2004, 15(18): 2801-2805. |
15 | KARBOUNE S , ARCHELAS A , BARATTI J . Properties of epoxide hydrolase from Aspergillus niger for the hydrolytic kinetic resolution of epoxides in pure organic media[J]. Enzyme & Microbial Technology, 2006, 39(2): 318-324. |
16 | CHEN Y , GOLDBERG S L , HANSON R L , et al . Enzymatic preparation of an (S)-amino acid from a racemic amino acid[J]. Organic Process Research & Development, 2011, 15(1): 241-248. |
17 | FRAILE J M , GARCı́A J I , HERRERı́AS C I , et al . Enantioselective cyclopropanation reactions in ionic liquids[J]. Tetrahedron: Asymmetry, 2001, 12(13): 1891-1894. |
18 | SAKURAMA H , KISHINO S , UCHIBORI Y , et al . β- Glucuronidase from Lactobacillus brevis useful for baicalin hydrolysis belongs to glycoside hydrolase family 30[J]. Appl. Microbiol. Biotechnol., 2014, 98(9): 4021-4032. |
19 | CHOI Y B , KIM K S , RHEE J S . Hydrolysis of soybean isoflavone glucosides by lactic acid bacteria[J]. Biotechnology Letters, 2002, 24(24): 2113-2116. |
20 | 谢明杰, 石姗姗, 卢明春, 等 . 酶法水解大豆异黄酮[J]. 食品与发酵工业, 2004, 30(3): 21-24. |
XIE MINGJIE , SHI SHANSHAN , LU MINGCHUN , et al . Enzymolysis condition of soybean isflavone glucoside[J]. Food and Fermentation Industries, 2004, 30(3): 21-24. | |
21 | YOSIOKA I , SAIJOH S , KITAGAWA I . Soil bacterial hydrolysis leading to genuine aglycone Ⅳ. Four acylated derivatives of barringtogenol C from jegosaponin[J]. Chemical & Pharmaceutical Bulletin, 1972, 20(3): 564-569. |
22 | FENG X D , TANG H , HAN B , et al . Enhancing the thermostability of β-glucuronidase by rationally redesigning the catalytic domain based on sequence alignment strategy[J]. Industrial & Engineering Chemistry Research, 2016, 55(19): 5474-5483. |
23 | FENG X , TANG H , HAN B , et al . Engineering the thermostability of β-glucuronidase from Penicillium purpurogenum Li-3 by loop transplant[J]. Applied Microbiology & Biotechnology, 2016, 100(23): 1-12. |
24 | 冯旭东, 吕波, 李春 . 酶分子稳定性改造研究进展[J]. 化工学报, 2016, 67(1): 277-284. |
FENG X D , LÜ B , LI C . Advances in enzyme stability modification[J]. CIESC Journal, 2016, 67(1): 277-284. | |
25 | KAISER E T . Catalytic activity of enzymes altered at their active sites[J]. Angewandte Chemie International Edition, 1988, 27(7): 913-922. |
26 | DESANTIS G , BERGLUND P , STABILE M R , et al . Site-directed mutagenesis combined with chemical modification as a strategy for altering the specificity of the S1 and S1' pockets of subtilisin Bacillus lentus[J]. Biochemistry, 1998, 37(17): 5968. |
27 | YAMASHITA H , NAKATANI H , TONOMURA B . Change of substrate specificity by chemical modification of lysine residues of porcine pancreatic alpha-amylase[J]. Biochimica et Biophysica Acta (BBA): Protein Structure and Molecular Enzymology, 1993, 1202(1): 129-134. |
28 | LU W C , LEVY M , KINCAID R , et al . Directed evolution of the substrate specificity of biotin ligase[J]. Biotechnology & Bioengineering, 2014, 111(6): 1071-1081. |
29 | LV B , SUN H , HUANG S , et al . Structure-guided engineering of the substrate specificity of a fungal beta-glucuronidase toward triterpenoid saponins[J]. The Journal of Biological Chemistry, 2018, 293(2): 433-443. |
30 | TAYLOR J L , PRICE J E , TONEY M D . Directed evolution of the substrate specificity of dialkylglycine decarboxylase[J]. Biochimica et Biophysica Acta, 2015, 1854(2): 146-155. |
31 | NG T K , GAHAN L R , SCHENK G , et al . Altering the substrate specificity of methyl parathion hydrolase with directed evolution[J]. Archives of Biochemistry and Biophysics, 2015, 573: 59-68. |
32 | 邵泽香, 焦琳舒, 陆兆新, 等 . 基于定向进化技术提高地衣芽孢杆菌L-天冬酰胺酶活性[J]. 食品科学, 2017, 38(22): 8-13. |
SHAO Zexing , JIAO Linshu , LU Zhaoxin , et al . Improving L-asparaginase activity from bacillus licheniformis by directed evolution[J]. Food Science, 2017, 38(22): 8-13. | |
33 | ZHENG M M , CHEN K C , WANG R F , et al . Engineering 7 β -hydroxysteroid dehydrogenase for enhanced ursodeoxycholic acid production by multiobjective directed evolution[J]. Journal of Agricultural and Food Chemistry, 2017, 65(6): 1178-1185. |
34 | LAN D , WANG Q , XU J , et al . Residue Asn277 affects the stability and substrate specificity of the SMG1 lipase from Malassezia globosa [J]. International Journal of Molecular Sciences, 2015, 16(4): 7273-7288. |
35 | CHEN F F , ZHENG G W , LIU L , et al . Reshaping the active pocket of amine dehydrogenases for asymmetric synthesis of bulky aliphatic amines[J]. ACS Catalysis, 2018, 8(3): 2622-2628. |
36 | NIE Y , WANG S , XU Y , et al . Enzyme engineering based on X-ray structures and kinetic profiling of substrate libraries: alcohol dehydrogenases for stereospecific synthesis of a broad range of chiral alcohols[J]. ACS Catalysis, 2018, 8(6): 5145-5152. |
37 | YANG B , WANG H , SONG W , et al . Engineering of the conformational dynamics of lipase to increase enantioselectivity[J]. ACS Catalysis, 2017, 7(11): 7593-7599. |
38 | CHEN G S , SIAO S W , SHEN C R . Saturated mutagenesis of ketoisovalerate decarboxylase V461 enabled specific synthesis of 1-pentanol via the ketoacid elongation cycle[J]. Scientific Reports, 2017, 7(1): 28900255 |
39 | FURUYA T , SHITASHIMA Y , KINO K . Alteration of the substrate specificity of cytochrome P450 CYP199A2 by site-directed mutagenesis[J]. Journal of Bioscience and Bioengineering, 2015, 119(1): 47-51. |
40 | FOUMANI M , VUONG T V , MASTER E R . Altered substrate specificity of the gluco-oligosaccharide oxidase from Acremonium strictum [J]. Biotechnology and Bioengineering, 2011, 108(10): 2261-2269. |
41 | FERRARI A R , LEE M , FRAAIJE M W . Expanding the substrate scope of chitooligosaccharide oxidase from Fusarium graminearum by structure‐inspired mutagenesis[J]. Biotechnology & Bioengineering, 2015, 112(6): 1074-1080. |
42 | GRISEWOOD M J , HERNANDEZ LOZADA N J , THODEN J B , et al . Computational redesign of Acyl-ACP thioesterase with improved selectivity toward medium-chain-length fatty acids[J]. ACS Catal., 2017, 7(6): 3837-3849. |
43 | DURAND J , BIARN S X , WATTERLOT L , et al . A single point mutation alters the transglycosylation/hydrolysis partition, significantly enhancing the synthetic capability of an endo-glycoceramidase[J]. ACS Catalysis, 2016, 6(12): 8264-8275. |
44 | BISSARO B , DURAND J , BIARN S X , et al . Molecular design of non-leloir furanose-transferring enzymes from an α-l- arabinofuranosidase: a rationale for the engineering of evolved transglycosylases[J]. ACS Catalysis, 2015, 5(8): 4598-4611. |
45 | RAICH L , BORODKIN V , FANG W , et al . A Trapped Covalent Intermediate of a glycoside hydrolase on the pathway to transglycosylation. insights from experiments and quantum mechanics/molecular mechanics simulations[J]. |
Am J. . Chem. Soc., 2016, 138(10): 3325-3332. | |
46 | POZZO T , ROMERO-GARCIA J , FAIJES M , et al . Rational design of a thermostable glycoside hydrolase from family 3 introduces beta-glycosynthase activity[J]. Glycobiology, 2017, 27(2): 165-175. |
47 | DAVID B , IRAGUE R , JOUANNEAU D , et al . Internal water dynamics control the transglycosylation/hydrolysis balance in the agarase (AgaD) of Zobellia galactanivorans [J]. ACS Catalysis, 2017, 7(5): 3357-3367. |
48 | SEEBECK F P , HILVERT D . Conversion of a PLP-dependent racemase into an aldolase by a single active site mutation[J]. Journal of the American Chemical Society, 2003, 125(34): 10158-10159. |
[1] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[2] | MENG Lingding, MAO Menglei, LIAO Qiyong, MENG Zihui, LIU Wenfang. Recent advance in stability of carbonic anhydrase and formate dehydrogenase [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 436-447. |
[3] | GAO Bo, FENG Xudong, LI Chun. Visual and high-throughput method for detecting the activity of aspartate transcarbamylase [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2054-2059. |
[4] | ZHANG Yan, WANG Wei, XIE Rui, JU Xiaojie, LIU Zhuang, CHU Liangyin. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8 [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. |
[5] | LI Qingyuan, WANG Chao, XU Shipei, ZHANG Xueqin, QIU Mingjian, LIU Mengyao, CONG Mengxiao. Research progress on reaction process and catalysts for PBS precursor of 1,4-butanediol synthesis [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5771-5782. |
[6] | LU Zeping, PEI Xinhua, XUE Yu, ZHANG Xiaoguang, HU Yi. Chemical modification of porcine pancreatic lipase with betaine ionic liquid to improve its enzymatic properties [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6045-6052. |
[7] | LI Qing, LIU Wujun, GUO Xiaojia, WANG Qian, ZHAO Zongbao. Chiral NAD analogs as cofactors for biocatalysis [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5214-5221. |
[8] | ZHANG Xiaojian, LIU Qian, LIU Zhiqiang, ZHENG Yuguo. Stereoselective carbonyl reductases and their application in chiral alcohols synthesis [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1142-1160. |
[9] | JU Shuyun, WU Jianping, YANG Lirong. Advances in the molecular modification and application of D-amino acid oxidase [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1215-1225. |
[10] | Zhufan LIN, Shao’an CHENG, Zhengzhong MAO, Ruonan GU, Jiawei YANG. Recent advances in the construction and influencing factors of bio-electrochemical nitrogen removal systems [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3766-3776. |
[11] | Cheng ZHU,Guochao XU,Wei DAI,Jieyu ZHOU,Ye NI. Effect of position 127 on the activity and enantioselectivity of alcohol dehydrogenase KpADH [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5504-5511. |
[12] | YU Bo, LIU Chao, LIU Jindong, DING Wanyu, CHAI Weiping. Preparation of mesoporous zirconium phosphate and its catalytic performace in the preparation of cellulose from glucose [J]. Chemical Industry and Engineering Progress, 2018, 37(06): 2236-2241. |
[13] | YAN Xingchen, ZHAO Qianru, WANG Kaifeng, GUO Yuxin, JIANG Ling, HUANG He. Auto-induced expression of trehalose synthetase and novel process for catalytic production of trehalose [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1949-1955. |
[14] | WANG Rui, XU Yaohui, WANG Kewei, WU Minchen. Expression of PvEH3,a Phaseolus vulgaris epoxide hydrolase,and synthesis of chiral vicinal diols [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1933-1939. |
[15] | ZHOU Ya, YANG Chun. Degradation of 4-chloronitrobenzene by bioelectrochemical system [J]. Chemical Industry and Engineering Progress, 2018, 37(01): 375-380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |