Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 538-544.DOI: 10.16085/j.issn.1000-6613.2018-1319
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
Kai WANG(),Mingli HE,Meng WANG,Tianwei TAN()
Received:
2018-06-26
Revised:
2018-09-27
Online:
2019-01-05
Published:
2019-01-05
Contact:
Tianwei TAN
通讯作者:
谭天伟
作者简介:
王凯(1994—),男,博士研究生,研究方向为生物能源。E-mail:<email>Buctwk@163.com</email>。|谭天伟,中国工程院院士,博士生导师,研究方向为生物基化学品、生物能源和生物材料。E-mail:<email>twtan@mail.buct.edu.cn</email>。
CLC Number:
Kai WANG, Mingli HE, Meng WANG, Tianwei TAN. Green biological manufacture with CO2 as raw material[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 538-544.
王凯, 贺明丽, 王梦, 谭天伟. 以CO2为原料的绿色生物制造[J]. 化工进展, 2019, 38(01): 538-544.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1319
菌种 | 底物 | 产品 | 最适温度/℃ | 最适pH |
---|---|---|---|---|
伍氏乙酸杆菌 | H2/CO2,CO | 乙酸 | 30 | 6.8 |
长醋丝菌 | H2/CO2 | 乙酸,丁酸 | 30~33 | 7.8 |
食甲基丁酸杆菌 | H2/CO2,CO | 乙酸,乙醇 | 37 | 6 |
乙酸梭菌 | H2/CO2,CO | 乙酸 | 30 | 8.3 |
产乙醇梭状杆菌 | H2/CO2,CO | 乙酸,乙醇,2,3-丁二醇,乳酸 | 37 | 5.8~6.0 |
厌氧食气梭菌 | H2/CO2,CO | 乙酸,乙醇,丁酸盐,丁醇,乳酸 | 38 | 6.2 |
科斯卡塔梭菌 | H2/CO2,CO | 乙酸,乙醇 | 37 | 5.8~6.5 |
德雷克氏梭菌 | H2/CO2,CO | 乙酸,乙醇,丁酸 | 25~30 | 3.6~6.8 |
甲酸乙酸梭菌 | CO | 乙酸,甲酸 | 37 | — |
乙二醇梭菌 | H2/CO2 | 乙酸 | 37~40 | 7.0~7.5 |
杨氏梭菌 | H2/CO2,CO | 乙酸,乙醇, 2,3-丁二醇,乳酸 | 37 | 6 |
大梭菌 | H2/CO2 | 乙酸 | 30~32 | 7.0 |
拉氏梭菌 | H2/CO2 | 乙酸,乙醇, 2,3-丁二醇,乳酸 | 37 | 6.3 |
粪味梭菌 | H2/CO2,CO | 乙酸,乙醇,丁酸 | 37~40 | 5.4~7.5 |
淤泥真杆菌 | H2/CO2,CO | 乙酸,丁酸 | 38~39 | 7.0~7.2 |
普氏产醋杆菌 | H2/CO2,CO | 乙酸,丁酸 | 36~38 | 7.3 |
热带棒状穆尔氏菌 | H2/CO2,CO | 乙酸 | 55 | 6.5~6.8 |
菌种 | 底物 | 产品 | 最适温度/℃ | 最适pH |
---|---|---|---|---|
伍氏乙酸杆菌 | H2/CO2,CO | 乙酸 | 30 | 6.8 |
长醋丝菌 | H2/CO2 | 乙酸,丁酸 | 30~33 | 7.8 |
食甲基丁酸杆菌 | H2/CO2,CO | 乙酸,乙醇 | 37 | 6 |
乙酸梭菌 | H2/CO2,CO | 乙酸 | 30 | 8.3 |
产乙醇梭状杆菌 | H2/CO2,CO | 乙酸,乙醇,2,3-丁二醇,乳酸 | 37 | 5.8~6.0 |
厌氧食气梭菌 | H2/CO2,CO | 乙酸,乙醇,丁酸盐,丁醇,乳酸 | 38 | 6.2 |
科斯卡塔梭菌 | H2/CO2,CO | 乙酸,乙醇 | 37 | 5.8~6.5 |
德雷克氏梭菌 | H2/CO2,CO | 乙酸,乙醇,丁酸 | 25~30 | 3.6~6.8 |
甲酸乙酸梭菌 | CO | 乙酸,甲酸 | 37 | — |
乙二醇梭菌 | H2/CO2 | 乙酸 | 37~40 | 7.0~7.5 |
杨氏梭菌 | H2/CO2,CO | 乙酸,乙醇, 2,3-丁二醇,乳酸 | 37 | 6 |
大梭菌 | H2/CO2 | 乙酸 | 30~32 | 7.0 |
拉氏梭菌 | H2/CO2 | 乙酸,乙醇, 2,3-丁二醇,乳酸 | 37 | 6.3 |
粪味梭菌 | H2/CO2,CO | 乙酸,乙醇,丁酸 | 37~40 | 5.4~7.5 |
淤泥真杆菌 | H2/CO2,CO | 乙酸,丁酸 | 38~39 | 7.0~7.2 |
普氏产醋杆菌 | H2/CO2,CO | 乙酸,丁酸 | 36~38 | 7.3 |
热带棒状穆尔氏菌 | H2/CO2,CO | 乙酸 | 55 | 6.5~6.8 |
1 | CLOMBURG J M , CRUMBLEY A M , GONZALEZ R . Industrial biomanufacturing: the future of chemical production[J]. Science, 2017, 355(6320): 1-9. |
2 | DAMARTZIS T , ZABANIOTOU A . Thermochemical conversion of biomass to second generation biofuels through integrated process design—a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 366-378. |
3 | BIROL F . Key world energy statistics[R]. France: IEA Publications, 2017. |
4 | PETIE J R , JOUZEL J , RAYNAUD D , et al . Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica [J].Nature, 1999, 399: 429. |
5 | LIAO, J C, MI L , PONTRELLI S , et al . Fuelling the future: microbial engineering for the production of sustainable biofuels [J].Nature Rev. Microbiol. , 2016,14: 288-304 . |
6 | PACALA S , SOCOLOW R . Stabilization wedges: solving the climate problem for the next 50 years with current technologies[J]. Science, 2004, 305: 968-972. |
7 | O'NEILL B C , OPPENHEIMER M . Dangerous climate impacts and the kyoto protocol[J]. Science, 2002, 296(5575): 1971-1972. |
8 | HUGHES T P , BAIRD A H , BELLWOOD D R , et al . Climate change, human impacts, and the resilience of coral reefs[J]. Science , 2003, 301: 929-933 . |
9 | FOIT S R , VINKE I C , DE HAART L , et al . Power-to-syngas: an enabling technology for the transition of the energy system?[J]. Angew. Chem. Int. Ed., 2017, 56: 5402-5411 . |
10 | CHANGE I P O C . Climate change 2014 synthesis report[J]. Environmental Policy Collection, 2014, 27(2): 408. |
11 | MORIARTY P , HONNERY D . Assessing the climate mitigation potential of biomass[J]. AIMS Energy , 2016 , 5: 20-38. |
12 | SHEN Y . Carbon dioxide bio-fixation and wastewater treatment via algae photochemical synthesis for biofuels production[J].RSC Adv., 2014, 4: 49672-49722. |
13 | HAVLÍK P , SCHNEIDER U A , SCHMID E , et al . Global land-use implications of first and second generation biofuel targets[J]. Energy Policy, 2011, 39(10): 5690-5702. |
14 | SIMS R E , MABEE W , SADDLER J N , et al .An overview of second generation biofuel technologies[J]. Bioresour Technol. , 2010 ,101: 1570-1580. |
15 | POROSOFF M D , YAN B , CHEN J G . Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities[J]. Energy Environ. Sci., 2016, 9: 62-73. |
16 | WHITE J L , BARUCH M F , PANDER J E , et al . Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes[J]. Chem.Rev., 2015, 115: 12888-12935. |
17 | OLAH G A , GOEPPERT A , CZAUN M , et al . Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis[J]. J. Am. Chem. Soc., 2013,135: 648-650. |
18 | MEI Yang , LI Hailan , XIE Jin . Ribulose-1,5-bisphosphate carboxylase/oxygenase (rubisco)[J]. Plant Physiology Communications, 2007, 78(1): 155-162. |
19 | TCHERKEZ G G , FARQUHAR G D , ANDREWS T J . Despite slow catalysis and confused substrate specificity, all ribulose bisphosphate carboxylases may be nearly perfectly optimized[J]. Proc. Natl. Acad. Sci., U S A, 2006, 103: 7246-7251. |
20 | SAINI R , KAPOOR R , KUMAR R , et al . CO2 utilizing microbes—a comprehensive review[J]. Biotechnol Adv., 2011, 29: 949-960. |
21 | FIGUEROA I A , BARNUM T P , SOMASEKHAR P Y , et al . Metagenomics-guided analysis of microbial chemolithoautotrophic phosphite oxidation yields evidence of a seventh natural CO2 fixation pathway[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(1): E92. |
22 | BOUZON M , PERRET A , LOREAU O , et al . A synthetic alternative to canonical one-carbon metabolism[J]. ACS Synthetic Biology, 2017, 6(8): 1520-1533. |
23 | GONG F , LI Y . Fixing carbon, unnaturally[J]. Science, 2016, 354(6314): 830-831. |
24 | BAREVEN A , NOOR E , LEWIS N E , et al . Design and analysis of synthetic carbon fixation pathways[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19): 8889-8894. |
25 | DESAI S H , ATSUMI S . Photosynthetic approaches to chemical biotechnology[J]. Curr. Opin. Biotechnol., 2013 ,24: 1031-1036. |
26 | ANGERMAYR S A , GORCHS ROVIRA A , HELLINGWERF K J . Metabolic engineering of cyanobacteria for the synthesis of commodity products[J]. Trends Biotechnol., 2015, 33: 352-361. |
27 | BLANKENSHIP R E , SAYRE R T . Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement[J]. Science, 2011, 332(6031): 805-809. |
28 | CHEN M , ROBERT E , BLANKENSHIP R E , et al . Expanding the solar spectrum used by photosynthesis[J]. Trends in Plant Science, 2011, 16(8): 427-431. |
29 | SHEN JR . The structure of photosystem Ⅱ and the mechanism of water oxidation in photosynthesis[J]. Annu. Rev. Plant Biol.,2015,66: 23-48. |
30 | LIANG F , LINDBLAD P . Effects of overexpressing photosynthetic carbon flux control enzymes in the cyanobacterium synechocystis PCC 6803[J]. Metab. Eng., 2016, 38: 56-64. |
31 | LIEW F , KOEPKE M , SIMPSON S . Gas fermentation for commercial biofuels production[M]. New Zealand: Intechopen, 2013: 126-173. |
32 | Á FERNÁNDEZ-NAVEIRA , VEIGA MC , KENNES C . H-B-E (hexanol-butanol-ethanol) fermentation for the production of higher alcohols from syngas/waste gas[J]. Journal of Chemical Technology & Biotechnology, 2017, 92: 712-731. |
33 | ABUBACKAR H N , VEIGA M C , KENNES C . Production of acids and alcohols from syngas in a two-stage continuous fermentation process[J]. Bioresource Technology, 2018, 253: 227-234. |
34 | FUNGMIN L , MARTIN M E , TAPPEL R C , et al . Gas fermentation—A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks[J]. Frontiers in Microbiology, 2016, 7(1275): 1-28. |
35 | KANNO M , CARROLL A L , ATSUMI S . Global metabolic rewiring for improved CO2 fixation and chemical production in cyanobacteria[J]. Nat. Commun., 2017, 8: 14724. |
36 | SHIMIZU R , DEMPO Y , NAKAYAMA Y , et al . New insight into the role of the calvin cycle: reutilization of CO2 emitted through sugar degradation[J]. Sci .Rep.,2015,5: 11617. |
37 | LI Y J , WANG M M , CHEN Y W , et al . Engineered yeast with a CO2-fixation pathway to improve the bio-ethanol production from xylose-mixed sugars[J]. Sci. Rep., 2017,7: 43875. |
38 | YISHAI O , GOLDBACH L , TENENBOIM H , et al . Engineered assimilation of exogenous and endogenous formate in Escherichia coli [J]. ACS Synthetic Biology, 2017, 6(9): 1722. |
39 | YISHAI O , BOUZON M , DÖRING V , et al . In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli [J]. Chemical Engineering Science, 2018, 19(1): 65-89. |
40 | DÖRING V , DARII E , YISHAI OBAR-EVEN A ,et al . Implementation of a reductive route of one-carbon assimilation in Escherichia coli through directed evolution[J]. ACS Synthetic Biology, 2018,7(9): 2029-2036. |
41 | JONES S W , FAST A G , CARLSON E D , et al . CO2 fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion[J]. Nature Communications, 2016, 7: 12800. |
42 | HE H , MUTH C E , LINDNER S N , et al . Ribulose monophosphate shunt provides nearly all biomass and energy required for growth of E. coli [J]. ACS Synthetic Biology, 2018, 7(6): 1601-1611. |
43 | TUYISHIME P , WANG Y , FAN L W , et al . Engineering corynebacterium glutamicum for methanol-dependent growth and glutamate production[J]. Metab. Eng., 2018, 49: 220-231. |
44 | CHEN C T , CHEN F Y H , BOGORAD I W , et al . Synthetic methanol auxotrophy of Escherichia coli for methanol-dependent growth and production[J]. Metab. Eng., 2018,9: 257-266. |
45 | ELMEKAWY AHMED , M HEGAB HANAA , MOHANAKRISHNA GUNDA , et al . Technological advances in CO2, conversion electro-biorefinery: a step toward commercialization[J]. Bioresource Technology, 2016, 215: 357-370. |
46 | NEVIN K P , WOODARD T L , FRANKS A E , et al . Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J]. Micro. Bio., 2010, 1 (2): 103-110. |
47 | YANG Y , WU Y , HU Y , et al . Engineering electrode-attached microbial consortia for high-performance xylose-fed microbial fuel cell[J]. ACS Catalysis,2015,5: 6937-6945. |
48 | NEVIN K P , HENSLEY S A , FRANKS A E , et al . Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms[J]. Applied and Environmental Microbiology, 2011, 77(9): 2882-2886. |
49 | LI H , OPGENORTH P H , WERNICK D G , et al . Integrated electromicrobial conversion of CO2 to higher alcohols[J]. Science, 2012, 335(6076): 1596. |
50 | CHEN X , CAO Y , LI F , et al . Enzyme-assisted microbial electrosynthesis of poly(3-hydroxybutyrate) via CO2 bioreduction by engineered Ralstonia eutropha [J]. ACS Catalysis, 2018, 8(5): 4429-4437. |
51 | LIU C , GALLAGHER J J , SAKIMOTO K K , et al . Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals[J]. Nano Lett. ,2015,15: 3634-3639. |
52 | SAKIMOTO K K , WONG A B , YANG P . Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74. |
53 | YADAV R K , BAEG J O , OH G H , et al . A photocatalyst-enzyme coupled artificial photosynthesis system for solar energy in production of formic acid from CO2 [J]. Journal of the American Chemical Society, 2012, 134(28): 11455. |
54 | CHAUDHARY Y S , WOOLERTON T W , ALLEN C S , et al . Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals[J]. Chemical Communications, 2012, 48(1): 58-60. |
55 | JI X , SU Z , WANG P , et al . Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes[J]. ACS Nano, 2014, 9(4): 4600. |
56 | ROGER M , BROWN F , GABRIELLI W , et al . Efficient hydrogen-dependent carbon dioxide reduction by Escherichia coli [J]. Current Biology, 2018, 28(1): 140-145.e2. |
57 | JAJESNIAK P , ALI H E M O , WONG T S . Carbon dioxide capture and utilization using biological systems: opportunities and challenges[J]. J. Bioprocess. Biotech. , 2014, 4: 3. |
[1] | LI Jitong, WANG Gang, XIONG Yaxuan, XU Qian. Energy and exergy analysis of single-effect absorption refrigeration system with different refrigerants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 104-112. |
[2] | ZHANG Ruijie, LIU Zhilin, WANG Junwen, ZHANG Wei, HAN Deqiu, LI Ting, ZOU Xiong. On-line dynamic simulation and optimization of water-cooled cascade refrigeration system [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 124-132. |
[3] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[4] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[5] | SUN Yuyu, CAI Xinlei, TANG Jihai, HUANG Jingjing, HUANG Yiping, LIU Jie. Optimization and energy-saving of a reactive distillation process for the synthesis of methyl methacrylate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 56-63. |
[6] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[7] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[8] | HU Yafei, FENG Ziping, TIAN Jiayao, SONG Wenji. Waste heat recovery performance of an air-source gas engine-driven heat pump system in multi-heating operation modes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4204-4211. |
[9] | WANG Jiansheng, ZHANG Huipeng, LIU Xueling, FU Yuguo, ZHU Jianxiao. Analysis of flow and heat transfer characteristics in porous media reservoir [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4212-4220. |
[10] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[11] | WANG Shuaiqing, YANG Siwen, LI Na, SUN Zhanying, AN Haoran. Research progress on element doped biomass carbon materials for electrochemical energy storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4296-4306. |
[12] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[13] | YANG Pengwei, YU Linzhu, WANG Fangfang, JIANG Haoxuan, ZHAO Guangjin, LI Qi, DU Mingzhe, MA Shuangchen. Application prospect, challenge and development of ammonia energy storage in new power system [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4432-4446. |
[14] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[15] | LOU Baohui, WU Xianhao, ZHANG Chi, CHEN Zhen, FENG Xiangdong. Advances in nanofluid for CO2 absorption and separation [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3802-3815. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |