Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 495-504.DOI: 10.16085/j.issn.1000-6613.2018-1160
• Materials science and technology • Previous Articles Next Articles
Dong YANG1,2(),Zhiyuan ZHOU1,Fei DING3,4,Xuyang ZHAO1,Yao CHEN3,4,Zhongyi JIANG3,4()
Received:
2018-06-03
Revised:
2018-08-24
Online:
2019-01-05
Published:
2019-01-05
Contact:
Zhongyi JIANG
杨冬1,2(),周致远1,丁菲3,4,赵旭阳1,陈瑶3,4,姜忠义3,4()
通讯作者:
姜忠义
作者简介:
杨冬(1973—),男,副教授,硕士生导师,研究方向为光催化。E-mail:<email>dongyang@tju.edu.cn</email>。|姜忠义,教授,博士生导师,研究方向为光催化。E-mail:<email>zhyjiang@tju.edu.cn</email>。
基金资助:
CLC Number:
Dong YANG, Zhiyuan ZHOU, Fei DING, Xuyang ZHAO, Yao CHEN, Zhongyi JIANG. Research advances of g-C3N4-based photocatalytic materials with special morphologies[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 495-504.
杨冬, 周致远, 丁菲, 赵旭阳, 陈瑶, 姜忠义. 特殊形貌g-C3N4基光催化材料的研究进展[J]. 化工进展, 2019, 38(01): 495-504.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1160
催化剂种类 | 制备方法 | 形貌 | 应用领域 | 光催化活性 | 参考文献 |
---|---|---|---|---|---|
g-C3N4 | 热聚合 | 体相 | 产氢 | 12μmol·h-1 | Wang等[ |
g-C3N4 | 模板法 | 手性纳米棒 | 产氢 | 74 μmol·h-1 | Zheng等[ |
g-C3N4 | 自组装 | 氮缺陷纳米管 | 产氢 | 118.5μmol·h-1 | Mo等[ |
g-C3N4 | 水热合成 | 自掺杂六棱形微管 | 产氢 | 1575μmol·h-1·g-1 | Tong等[ |
g-C3N4/InVO4 | 无模板法 | 纳米棒/空心球 | 降解抗生素 | 体相g-C3N4降解速率的2.5倍 | You等[ |
g-C3N4 | 微波加热 | 金字塔阵列 | 降解罗丹明B | 脱色率99.5%(2h) | Yu等[ |
g-C3N4 | 模板法 | 多孔微球 | 产氢 | 157μmol·h-1 | Zhao等[ |
g-C3N4 | 模板法 | 多壳层微囊 | 产氢 | 630μmol·h·-1·g-1 | Tong等[ |
g-C3N4 | 水热合成 | 凝胶 | 性能研究 | 氧化还原能力增强 | Zeng等[ |
g-C3N4/GO | 水热合成 | 凝胶 | 降解甲基橙 | 去除率92%(4h) | Tong等[ |
g-C3N4 /GO | 超声化学 | 凝胶 | 去除NO | NO去除率为64.9%和60.7% | Li等[ |
g-C3N4 | 无模板法 | 磷掺杂纳米花 | 产氢 | 104μmol·h-1 | Zhu等[ |
g-C3N4/C | 超分子组装 | 微米花 | 性能研究 | 高析氧反应活性 | Tong等[ |
g-C3N4 | 热结晶 | 树状结构 | 产氢 | 178μmol·h-1 | Song等[ |
催化剂种类 | 制备方法 | 形貌 | 应用领域 | 光催化活性 | 参考文献 |
---|---|---|---|---|---|
g-C3N4 | 热聚合 | 体相 | 产氢 | 12μmol·h-1 | Wang等[ |
g-C3N4 | 模板法 | 手性纳米棒 | 产氢 | 74 μmol·h-1 | Zheng等[ |
g-C3N4 | 自组装 | 氮缺陷纳米管 | 产氢 | 118.5μmol·h-1 | Mo等[ |
g-C3N4 | 水热合成 | 自掺杂六棱形微管 | 产氢 | 1575μmol·h-1·g-1 | Tong等[ |
g-C3N4/InVO4 | 无模板法 | 纳米棒/空心球 | 降解抗生素 | 体相g-C3N4降解速率的2.5倍 | You等[ |
g-C3N4 | 微波加热 | 金字塔阵列 | 降解罗丹明B | 脱色率99.5%(2h) | Yu等[ |
g-C3N4 | 模板法 | 多孔微球 | 产氢 | 157μmol·h-1 | Zhao等[ |
g-C3N4 | 模板法 | 多壳层微囊 | 产氢 | 630μmol·h·-1·g-1 | Tong等[ |
g-C3N4 | 水热合成 | 凝胶 | 性能研究 | 氧化还原能力增强 | Zeng等[ |
g-C3N4/GO | 水热合成 | 凝胶 | 降解甲基橙 | 去除率92%(4h) | Tong等[ |
g-C3N4 /GO | 超声化学 | 凝胶 | 去除NO | NO去除率为64.9%和60.7% | Li等[ |
g-C3N4 | 无模板法 | 磷掺杂纳米花 | 产氢 | 104μmol·h-1 | Zhu等[ |
g-C3N4/C | 超分子组装 | 微米花 | 性能研究 | 高析氧反应活性 | Tong等[ |
g-C3N4 | 热结晶 | 树状结构 | 产氢 | 178μmol·h-1 | Song等[ |
1 | WANG Q , HISATOMI T , JIA Q , et al . Scalable water splitting on particulate photocatalyst sheets with a solar to hydrogen energy conversion efficiency exceeding 1%[J]. Nature Materials, 2016, 15(6): 611-611. |
2 | MAEDA K , TERAMURE K , LU D , et al . Photocatalyst releasing hydrogen from water[J]. Nature, 2006, 440(7082): 295-295. |
3 | SCHULTA D M , YOON T P . Solar synthesis:prospects in visible light photocatalysis[J]. Science, 2014, 343(6174): 1239176-1239176. |
4 | FUJISHIMA A , HONDA K . Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358): 37-38. |
5 | YANG D , ZOU X Y , TONG Z W , et al . Fabrication of SrTiO3, nanotubes via an isomorphic conversion strategy[J]. Journal of Nanoparticle Research, 2018, 20(2): 30-30. |
6 | 郭雅容, 陈志鸿, 刘琼, 等 . 石墨相氮化碳光催化剂研究进展[J]. 化工进展, 2016, 35(7): 2063-2070. |
GUO Y R , CHENG Z H , LIU Q , et al .Research progress of graphitic carbon nitride in photocatalysis[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2063-2070. | |
7 | WANG X C , MAEDA K , THOMAS A , et al . A metal free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. |
8 | MA L, KANG X X , HU S Z , et al . Preparation of Fe/P co-doped graphitic carbon nitride with enhanced visible light photocatalytic activity[J]. Journal of Molecular Catalysis, 2015, 157(4): 840-842. |
9 | LI X B , HARTLEY G , WARD A J , et al . Hydrogenated defects in graphitic carbon nitride nanosheets for improved photocatalytic hydrogen evolution[J]. Journal of Physical Chemistry C, 2015, 119(27): 14938−14946. |
10 | SRINIVASU K , MODAK B , GHOSH S K . Porous graphitic carbon nitride:a possible metal free photocatalyst for water splitting[J]. Journal of Physical Chemistry C, 2014, 118(46): 26479−26484. |
11 | LU W Y , XU T F , YU W , et al . Synergistic photocatalytic properties and mechanism of g-C3N4, coupled with zinc phthalocyanine catalyst under visible light irradiation[J]. Applied Catalysis B:Environmental, 2016, 180:20-28. |
12 | WANG J , QIN C , WANG H , et al . Supporting information exceptional photocatalytic activities for CO2 conversion on Al/O bridged g-C 3N4 /α-Fe 2O3 Z-scheme nanocomposites and mechanism insight with isotopes[J]. Applied Catalysis B: Environmental, 2018, 221:459-466. |
13 | LIU L , QI Y , HU J , et al . Efficient visible light photocatalytic hydrogen evolution and enhanced photostability of core shell Cu2O/g-C3N4 octahedra[J]. Applied Surface Science, 2015, 351:1146-1154. |
14 | ZHU B , ZHANG L , CHENG B , et al . First principle calculation study of tri-s-triazine based g-C3N4: a review[J]. Applied Catalysis B: Environmental, 2017, 224:983-999. |
15 | PATNAIK S , SAHOO D P , PADIDA K . An overview on Ag modified g-C3N4 based nanostructured materials for energy and environmental applications[J]. Renewable & Sustainable Energy Reviews, 2018, 82:1297-1312. |
16 | MASIH D , MA Y, ROHANI S . g-C3N4, Based noble metal free photocatalyst systems:a review[J]. Applied Catalysis B:Environmental, 2017, 206:556-588. |
17 | WANG Y , JIANG Q , SHANG J K , et al . Advances in the synthesis of mesoporous carbon nitride materials[J]. Acta Physico-Chimica Sinica, 2016, 32(8): 1913-1928. |
18 | FU J W , YU J G , JIANG C J , et al . g-C3N4 Based heterostructured photocatalysts[J]. Advanced Energy Materials, 2017, 8(3): 1701503. |
19 | NASERI A , SAMADI M , POURJAVADI A , et al . Graphitic carbon nitride (g-C3N4) based photocatalysts for solar hydrogen generation:recent advances and future development directions[J]. Journal of Materials Chemistry A, 2017, 5: 23406-23433. |
20 | XU Y , KRAFT M , XU R . Metal free carbonaceous electrocatalysts and photocatalysts for water splitting[J]. Chemical Society Reviews, 2016, 45(11): 3039-3052. |
21 | CAO S , LOW J , YU J , et al . Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 46(21): 2150-2176. |
22 | ZHENG Y , LIN L , WANG B , et al . Graphitic carbon nitride polymers toward sustainable photoredox catalysis[J]. Angewandte Chemie International Edition, 2015, 54(44): 2868-12884. |
23 | LIU J , WANG H , ANOTONIETTI M . Graphitic carbon nitride “reloaded”:emerging applications beyond (photo)catalysis[J]. Chemical Society Reviews, 2016, 45(8): 2308-2326. |
24 | LI J , LI H , ZHAN G , et al . Solar water splitting and nitrogen fixation with layered bismuth oxyhalides[J]. Accounts of Chemical Research, 2016, 50(1): 112-121. |
25 | GONG Y , LI M , WANG Y . Carbon nitride in energy conversion and storage:recent advances and future prospects[J]. Chemsuschem, 2015, 8(6): 931-946. |
26 | DING F , YANG D , TING Z W , et al . Graphitic carbon nitride based nanocomposites as visible light driven photocatalysts for environmental purification[J]. Environmental Science Nano, 2017, 4(7): 1455-1469. |
27 | 范乾靖, 刘建军, 于迎春, 等 . 新型非金属光催化剂——石墨型氮化碳的研究进展[J]. 化工进展, 2014, 33(5): 1185-1194. |
FAN Q J , LIU J H , YU Y C , et al . Research progress in a new metal free photocatalyst graphitic carbon nitride[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1185-1194. | |
28 | TONG H , OUYANG S , BI Y , et al . Nano photocatalytic materials:possibilities and challenges[J]. Advanced Materials, 2012, 24(2): 229-251 |
29 | LI H J , QIAN D J , CHEN M . A templateless infrared heating process for fabricating carbon nitride nanorods with efficient photocatalytic H2 evolution[J]. ACS Applied Materials & Interfaces, 2015, 7(45): 25162-25170. |
30 | CUI Y , DING Z , FU X , et al . Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis[J]. Angewandte Chemie International Edition, 2012, 124(47): 11814-11818. |
31 | FU J , ZHU B , JIANG C , et al . Hierarchical horous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity[J]. Small, 2017, 13(15): 1603938. |
32 | ZHAO Y , WANG Y , LIU X , et al . Carbon quantum dot implanted graphite carbon nitride nanotubes:excellent charge separation and enhanced photocatalytic hydrogen evolution[J]. Angewandte Chemie International Edition, 2018, 57:5765-5771. |
33 | ZHU Y , MARIANOV A N , XU H , et al . Bimetallic Ag-Cu supported on graphitic carbon nitride nanotubes for improved visible light photocatalytic hydrogen production[J]. ACS Applied Materials & Interfaces, 2018, 10 (11): 9468-9477. |
34 | ZHENG Y , LIN L , YE X , et al . Helical graphitic carbon nitrides with photocatalytic and optical activities[J]. Angewandte Chemie International Edition, 2014, 53(44): 11926-12930. |
35 | LI X H , WANG X , ANTONIETTI M . Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles:hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step[J]. Chemical Science, 2012, 3(6): 2170-2174. |
36 | JIAN L , HUANG J , HAN Z , et al . Uniform graphitic carbon nitride nanorod for efficient photocatalytic hydrogen evolution and sustained photoenzymatic catalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8434-8440. |
37 | MO Z , XU H , CHEN Z , et al . Self-assembled synthesis of defect engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy[J]. Applied Catalysis B:Environmental, 2017, 225:154-161. |
38 | ONG W J , TAN L L , NG Y H , et al . Graphitic carbon nitride (g-C3N4) based photocatalysts for artificial photosynthesis and environmental remediation:are we a step closer to achieving sustainability?[J]. Chemical Reviews, 2016, 116(12): 7159-7329. |
39 | TONG Z W , YANG D , SUN Y Y , et al . Tubular g-C3N4 isotype heterojunction: enhanced visible light photocatalytic activity through cooperative manipulation of oriented electron and hole transfer[J]. Small, 2016, 12(30): 4093-4101. |
40 | YOU Z Y , SU Y X , YU Y , et al . Preparation of g-C3N4, nanorod/InVO4, hollow sphere composite with enhanced visible light photocatalytic activities[J]. Applied Catalysis B:Environmental, 2017, 213:127-135. |
41 | ZHENG Y , LIU J , LIANG J , et al . Graphitic carbon nitride materials:controllable synthesis and applications in fuel cells and photocatalysis[J]. Energy & Environmental Science, 2012, 5(5): 6717-6731. |
42 | YU Y Z , WANG C C , LUO L H , et al . An environment friendly route to synthesize pyramid like g-C3N4 arrays for efficient degradation of rhodamine B under visible-light irradiation[J]. Chemical Engineering Journal, 2017, 334:1869-1877. |
43 | LI Y , JIANG Y , RUAN Z , et al . Simulation guided synthesis of graphitic carbon nitride beads with 3D interconnected and continuous meso/macropore channels for enhanced light absorption and photocatalytic performance[J]. Journal of Materials Chemistry A, 2017, 5:21300-21312. |
44 | WANG J , ZHANG C , SHEN Y , et al . Environment friendly preparation of porous graphite phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity[J]. Journal of Materials Chemistry A, 2015, 3(9): 5126-5131. |
45 | ZHAO S , ZHANG Y W , ZHOU Y M , et al . Facile one step synthesis of hollow mesoporous g-C3N4 spheres with ultrathin nanosheets for photoredox water splitting[J]. Carbon, 2018, 126:247-256. |
46 | SHEN W , REN L , ZHOU H , et al . Facile one pot synthesis of bimodal mesoporous carbon nitride and its function as a lipase immobilization support[J]. Journal of Materials Chemistry, 2011, 21(11): 3890-3894. |
47 | WANG Y , WANG X , ANTONIETTI M , et al . Facile one pot synthesis of nanoporous carbon nitride solids by using soft templates[J]. Chemsuschem, 2010, 3(4): 435-439. |
48 | TONG Z W , YANG D , LI Z , et al . Thylakoid inspired multishell g-C3N4 nanocapsules with enhanced visible light harvesting and electron transfer properties for high efficiency photocatalysis[J]. ACS Nano, 2017, 11(1): 1103-1112. |
49 | SUN J , ZHANG J , ZHANG M , et al . Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles[J]. Nature Communications, 2012, 3(4): 1139-1139. |
50 | ZHENG D , HUANG C , WANG X . Post annealing reinforced hollow carbon nitride nanospheres for hydrogen photosynthesi[J]. Nanoscale, 2014, 7(2): 465-470. |
51 | ZOU Y , SHI J W , MA D, et al . In situ synthesis of C-doped TiO2/g-C3N4, core shell hollow nanospheres with enhanced visible light photocatalytic activity for H2 evolution[J]. Chemical Engineering Journal, 2017, 322:435-444. |
52 | LI G , CHEN Q , LAN J . Facile synthesis metastable phase induced morphological evolution and crystal ripening, and structure dependent photocatalytic properties of 3D hierarchical anatase superstructures[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 22561-22568. |
53 | HWANG S H , YUN J , JANG J . Multi shell porous TiO2 hollow nanoparticles for enhanced light harvesting in dye sensitized solar cells[J]. Advanced Functional Materials, 2015, 24(48): 7619-7626. |
54 | XIANG Q , LIU Y , ZOU X , et al . Hydrothermal synthesis of a new kind of N-doped graphene gel like hybrid as an enhanced ORR electrocatalyst[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 10842-10850. |
55 | ZENG Y X , LIU C B , WANG L L , et al . A three dimensional graphitic carbon nitride belt network for enhanced visible light photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2016, 4(48): 19003-19010. |
56 | TONG Z W , YANG D , SHI J F , et al . Three dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible light photocatalytic performance[J]. ACS Applied Materials & Interfaces, 2015, 7(46): 25693-25701. |
57 | JIANG W , LUO W , ZONG R , et al . Polyaniline/carbon nitride nanosheets composite hydrogel:a separation free and high efficient photocatalyst with 3D hierarchical structure[J]. Small, 2016, 12(32): 4370-4378. |
58 | ONG W J , TAN L L , CHAI S P , et al . Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4, nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane[J]. Nano Energy, 2015, 13:757-770. |
59 | LI Y , SUN Y , DONG F , et al . Enhancing the photocatalytic activity of bulk g-C3N4 by introducing mesoporous structure and hybridizing with graphene[J]. Journal of Colloid and Interface Science, 2014, 436:29-36. |
60 | ZHU Y P , REN T Z , YUAN Z Y . Mesoporous phosphorus doped g-C3N4 nanostructured flowers with superior photocatalytic hydrogen evolution performance[J]. ACS Applied Materials & Interfaces, 2015, 7(30): 16850-16856. |
61 | TONG Z W , YANG D , ZHAO X Y , et al . Bio-inspired synthesis of three-dimensional porous g-C3N4/Carbon microflowers with enhanced oxygen evolution reactivity[J]. Chemical Engineering Journal, 2017, 337:312-321. |
62 | LIN B , AN H , YAN X , et al . Fish scale structured g-C3N4, nanosheet with unusual spatial electron transfer property for high efficiency photocatalytic hydrogen evolution[J]. Applied Catalysis B:Environmental, 2017, 210:173-183. |
63 | WANG M , JU P , LI J , et al . Facile synthesis of MoS2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7878-7886. |
64 | LIN X , XU D , CHE G , et al . Construction of leaf-like g-C3N4/Ag/BiVO4 nanoheterostructures with enhanced photocatalysis performance under visible light irradiation[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2017, 513:117-124. |
65 | SONG T , YONG Z P , ZENG J , et al . In situ construction of globe like carbon nitride as self cocatalyst modified tree like carbon nitride for drastic improvement of visible light photocatalytic H2 evolution[J]. Chemcatchem, 2017, 9(21): 4035-4042. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | ZHU Chuanqiang, RU Jinbo, SUN Tingting, XIE Xingwang, LI Changming, GAO Shiqiu. Characteristics of selective non-catalytic reduction of NO x with solid polymer denitration agent [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4939-4946. |
[14] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[15] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |