Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 457-466.DOI: 10.16085/j.issn.1000-6613.2018-1340
• Materials science and technology • Previous Articles Next Articles
Hongxia GUO(),Yan NAN,Xiaochen KOU,Shengping WANG(),Yujun ZHAO,Xinbin MA
Received:
2018-07-02
Revised:
2018-09-11
Online:
2019-01-05
Published:
2019-01-05
Contact:
Shengping WANG
通讯作者:
王胜平
作者简介:
郭红霞(1982—),女,博士研究生,研究方向为CO2的高效捕集。E-mail:<email>guohongxia.ok@163.com</email>。|王胜平,教授,博士生导师,研究方向为一碳化学与化工。E-mail:<email>spwang@tju.edu.cn</email>。
基金资助:
CLC Number:
Hongxia GUO, Yan NAN, Xiaochen KOU, Shengping WANG, Yujun ZHAO, Xinbin MA. Research on doping modification and morphology control of calcium-based CO2 sorbents[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 457-466.
郭红霞, 南雁, 寇晓晨, 王胜平, 赵玉军, 马新宾. 钙基CO2吸附剂的惰性掺杂和形貌调控研究进展[J]. 化工进展, 2019, 38(01): 457-466.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1340
掺杂量 Ca/Zr(摩尔比) | 制备方法 | 吸脱附温度/℃ | 循环次数 | 反应器 | 吸附容量/g·g-1 | 参考文献 |
---|---|---|---|---|---|---|
10/3 | 火焰喷雾法 | 700/700 | 100 | TGA | 64%(X CaO) | [ |
10/5 | 火焰喷雾法 | 700/700 | 1200 | TGA | 60%(X CaO) | [ |
10/1 | 湿混合 | 650/930 | 25 | IGA | 0.30 | [ |
30/1 | 湿化学法 | 650/800 | 30 | TGA | 0.37 | [ |
13.2/1 | 溶胶-凝胶法 | 650/900 | 30 | TGA | 0.45 | [ |
95/5 | 溶胶-凝胶法 | 800/800 | 90 | TGA | 0.34 | [ |
8.5/1 | 高温固相法 | 650/700 | 20 | TGA | 0.48 | [ |
3.3/1 | 表面活性剂模板/超声法 | 600/750 | 15 | TGA | 0.15 | [ |
10/5 | 溶胶-凝胶法 | 700/700 | 1200 | TGA | 0.30 | [ |
掺杂量 Ca/Zr(摩尔比) | 制备方法 | 吸脱附温度/℃ | 循环次数 | 反应器 | 吸附容量/g·g-1 | 参考文献 |
---|---|---|---|---|---|---|
10/3 | 火焰喷雾法 | 700/700 | 100 | TGA | 64%(X CaO) | [ |
10/5 | 火焰喷雾法 | 700/700 | 1200 | TGA | 60%(X CaO) | [ |
10/1 | 湿混合 | 650/930 | 25 | IGA | 0.30 | [ |
30/1 | 湿化学法 | 650/800 | 30 | TGA | 0.37 | [ |
13.2/1 | 溶胶-凝胶法 | 650/900 | 30 | TGA | 0.45 | [ |
95/5 | 溶胶-凝胶法 | 800/800 | 90 | TGA | 0.34 | [ |
8.5/1 | 高温固相法 | 650/700 | 20 | TGA | 0.48 | [ |
3.3/1 | 表面活性剂模板/超声法 | 600/750 | 15 | TGA | 0.15 | [ |
10/5 | 溶胶-凝胶法 | 700/700 | 1200 | TGA | 0.30 | [ |
1 | 郭庆杰 .温室气体二氧化碳捕集和利用技术进展[M].北京:化学工业出版社,2010:5-10. |
GUO Qingjie . The progress of CO2 capture and utilization[M]. Beijing: Chemical Industry Publisher, 2010: 5-10. | |
2 | 朱战敏 .钙基高温CO2吸附剂的研究[D].西安:西北大学,2016. |
ZHU Zhanmin . Research on calcium based high temperature carbon dioxide adsorbent[D]. Xi’an: Northwest University, 2016. | |
3 | BHATIA S K , PERLMUTER D D . Effect of the product layer on the kinetics of the CO2-lime reaction[J]. AIChE Journal, 1983, 29: 79-86. |
4 | LU H , KHAN A , PRATSINIS S E , et al . Flame-made durable doped-CaO nanosorbents for CO2 capture[J]. Energy & Fuel, 2009, 23(1/2): 1093-1100. |
5 | WU S F , BEUM T H , YANG J I , et al . Properties of Ca-base CO2 sorbent using Ca(OH)2 as precursor[J]. Industrial & Engineering Chemistry Research, 2007, 46: 7896-7899. |
6 | SULTANA K S , CHEN D . Enhanced hydrogen production by in situ CO2 removal on CaCeZrO x nanocrystals[J]. Catalysis Today, 2011, 171: 43-51. |
7 | KOIRALA R , GUNUGUNURI K R , PRATSINIS S E , et al . Effect of zirconia doping on the structure and stability of CaO-based sorbents for CO2 capture during extended operating cycles[J]. Journal of Physical Chemistry C, 2011, 115 (50): 24804-24812. |
8 | RADFARNIA H R , ILIUTA M C . Metal oxide-stabilized calcium oxide CO2 sorbent for multicycle operation[J]. Chemical Engineering Journal, 2013, 232: 280-289. |
9 | ZHAO M , BILTON M , BROWN A P , et al . Durability of CaO-CaZrO3 sorbents for high-temperature CO2 capture prepared by a wet chemical method[J]. Energy & Fuel, 2014, 28(2): 1275-1283. |
10 | ZHAO C J , ZHOU Z M , CHENG Z M . Sol-gel-derived synthetic CaO-based CO2 sorbents incorporated with different inert materials[J]. Industrial & Engineering Chemistry Research, 2014, 53(36): 14065-14074. |
11 | BRODA M , MÜLLER C R . Sol-gel-derived, CaO-based, ZrO2-stabilized CO2 sorbents[J]. Fuel, 2014, 127: 94-100. |
12 | MOHAMMADI M , LAHIJANI P , MOHAMED A R . Refractory dopant-incorporated CaO from waste eggshell as sustainable sorbent for CO2 capture: experimental and kinetic studies[J]. Chemical Engineering Journal, 2014, 243: 455-464. |
13 | RADFARNIA H R , ILIUTA M C . Development of zirconium-stabilized calcium oxide absorbent for cyclic high-temperature CO2 capture[J]. Industrial & Engineering Chemistry Research, 2012, 51(31): 10390-10398. |
14 | REDDY G K , QUILLIN S , SMIRNIOTIS P . Influence of the synthesis method on the structure and CO2 adsorption properties of Ca/Zr sorbents[J]. Energy & Fuels, 2014, 28 (5): 3292-3299. |
15 | PHROMPRASIT J , POWELL J , WONGSAKULPHASATCH S , et al . H2 production from sorption enhanced steam reforming of biogas using multifunctional catalysts of Ni over Zr-, Ce- and La-modified CaO sorbents[J]. Chemical Engineering Journal, 2017, 313: 1415-1425. |
16 | WANG S P , FAN S S , FAN L J , et al . Effect of cerium oxide doping on the performance of CaO-based sorbents during calcium looping cycles[J]. Environmental Science & Technology, 2015, 49(8): 5021-5027. |
17 | LIU X T , SHI J F , HE L , et al . Modification of CaO-based sorbents prepared from calcium acetate for CO2 capture at high temperature[J]. Chinese Journal of Chemical Engineering, 2017, 25: 572-580. |
18 | YANASE I , MAEDA T , KOBAYASHI H . The effect of addition of a large amount of CeO2 on the CO2 adsorption properties of CaO powder[J]. Chemical Engineering Journal, 2017, 327: 548-554. |
19 | 张雷,张力,闫云飞,等 . 掺杂Ce、Zr对CO2钙基吸附剂循环特性的影响[J]. 化工学报, 2015, 66(2):612-617. |
ZHANG Lei , ZHANG Li , YAN Yunfei , et al . Effect of Ce, Zr on cyclic performance of CaO-based CO2 sorbents[J]. CIESC Journal, 2015, 66(2): 612-617. | |
20 | CHEN H , ZHANG P , DUAN Y , et al . Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol-gel process[J]. Applied Energy, 2016, 162: 390-400. |
21 | LI Y J , ZHAO C S , DUAN L B , et al . Cyclic calcination/ carbonation looping of dolomite modified with acetic acid for CO2 capture[J]. Fuel Processing Technology, 2008, 89(12): 1461-1469. |
22 | REDDY E P , SMIRNIOTIS P G . High-temperature sorbents for CO2 made of alkali metals doped on CaO supports [J]. Journal of Physical Chemistry B, 2004, 108 (23): 7794-7800. |
23 | CHEN H , ZHANG P , DUAN Y , et al . Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol-gel process[J]. Applied Energy, 2016, 162: 390-400. |
24 | SUN R , LI Y , LIU H , et al . CO2 capture performance of calcium-based sorbent doped with manganese salts during calcium looping cycle[J]. Applied Energy, 2012, 89 (1): 368-373. |
25 | LI L , KING D L , NIE Z , et al . Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO2 capture[J]. Industrial & Engineering Chemistry Research, 2009, 48(23): 10604-10613. |
26 | PARK J , YI K B . Effects of preparation method on cyclic stability and CO2 absorption capacity of synthetic CaO-MgO absorbent for sorption-enhanced hydrogen production[J]. International Journal of Hydrogen Energy, 2012, 37(1): 95-102. |
27 | LAN P Q , WU S F . Synthesis of a porous nano-CaO/MgO-based CO2 adsorbent[J]. Chemical Engineering Technology, 2014, 37 (4): 580-586. |
28 | LIU W , FENG B , WU Y , et al . Synthesis of sintering-resistant sorbents for CO2 capture[J]. Environmental Science & Technology, 2010, 44(8): 3093-3097. |
29 | LI Z S , CAI N S , HUANG Y Y , et al . Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent[J]. Energy & Fuels, 2005, 19(4): 1447-1452. |
30 | PACCIANI R , MULLER C R , DAVIDSON J F , et al . Synthetic Ca-based solid sorbents suitable for capturing CO2 in a fluidized bed[J]. The Canadian Journal of Chemical Engineering, 2008, 86(3): 356-366. |
31 | KOIRALA R , REDDY G K , SMIRNIOTIS P G . Single nozzle flame-made highly durable metal doped Ca-based sorbents for CO2 capture at high temperature[J]. Energy & Fuels, 2012, 26 (5): 3103-3109. |
32 | DENNIS J S , PACCIANI R . The rate and extent of uptake of CO2 by a synthetic, CaO-containing sorbent[J]. Chemical Engineering Science, 2009, 64 (9): 2147-2157. |
33 | ZHOU Z M , QI Y , XIE M M , et al . Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance[J]. Chemical Engineering Science, 2012, 74: 172-180. |
34 | MARTAVALTZI C S , LEMONIDOU A A . Development of new CaO based sorbent materials for CO2 removal at high temperature[J]. Microporous and Mesoporous Materials, 2008, 110 (1): 119-127. |
35 | WU S F , LI Q H , KIM J N , et al . Properties of a nano CaO/Al2O3 CO2 sorbent[J]. Industrial & Engineering Chemistry Research, 2008, 47(1): 180-184. |
36 | RADFARNIA H R , ILIUTA M C . Metal oxide-stabilized calcium oxide CO2 sorbent for multicycle operation[J]. Chemical Engineering Journal, 2013, 232: 280-289. |
37 | STENDARDO S , ANDERSEN L K , HERCE C . Self-activation and effect of regeneration conditions in CO2-carbonate looping with CaO-Ca12Al14O33 sorbent[J]. Chemical Engineering Journal, 2013, 220: 383-394. |
38 | SAYYAH M , ITO B R , ROSTAM-ABADI M , et al . CaO-based sorbents for CO2 capture prepared by ultrasonic spray pyrolysis[J]. RSC Advances, 2013, 43: 19872-19875. |
39 | KIM J N , KO C H , YI K B . Sorption enhanced hydrogen production using one-body CaO-Ca12Al14O33-Ni composite as catalytic absorbent[J]. International Journal of Hydrogen Energy, 2013, 38 (14): 6072-6078. |
40 | KIERZKOWSKA A M , POULIKAKOS L V , BRODA M , et al . Synthesis of calcium-based, Al2O3-stabilized sorbents for CO2 capture using a coprecipitation technique[J]. International Journal of Greenhouse Gas Control, 2013, 15: 48-54. |
41 | MARTAVALTZI C S , LEMONIDOU A A . Parametric study of the CaO-Ca12Al14O33 synthesis with respect to high CO2 sorption capacity and stability on multicycle operation[J]. Industrial & Engineering Chemistry Research, 2008, 47 (23): 9537-9543. |
42 | ANGELI S D , MARTAVALTZI C S , LEMONIDOU A A . Development of a novel synthesized Ca-based CO2 sorbent for multicycle operation: parametric study of sorption[J]. Fuel, 2014, 127: 62-69. |
43 | RADFARNIA H R , SAYARI A . A highly efficient CaO-based CO2 sorbent prepared by a citrate-assisted sol-gel technique[J]. Chemical Engineering Journal, 2015, 262: 913-920. |
44 | XU Y Q , DING H R , LUO C , et al . Effect of lignin, cellulose and hemicellulose on calcium looping behavior of CaO-based sorbents derived from extrusion-spherization method[J]. Chemical Engineering Journal, 2018, 334: 2520-2529. |
45 | FLORIN N H , BLAMEY J , FENNELL P S . Synthetic CaO-based sorbent for CO2 capture from large-point sources[J]. Energy & Fuels, 2010, 24(8): 4598-4604. |
46 | CHANG P H , CHANG Y P , CHEN S Y , et al . Ca-rich Ca-Al oxide, high-temperature-stable sorbents prepared from hydrotalcite precursors: synthesis, characterization, and CO2 capture capacity[J]. ChemSusChem, 2011, 4 (12): 1844-1851. |
47 | CHANG P H , LEE T J , CHANG Y P , et al . CO2 sorbents with scaffold-like Ca-Al layered double hydroxides as precursors for CO2 capture at high temperatures[J]. ChemSusChem, 2013, 6 (6): 1076-1083. |
48 | CHANG P H , CHANG Y P , LAI Y H , et al . Synthesis, characterization and high temperature CO2 capture capacity of nanoscale Ca-based layered double hydroxides via reverse microemulsion[J]. Journal of Alloys and Compounds, 2014, 586(s1): S498-S505. |
49 | YU C T , CHEN W C . Hydrothermal preparation of calcium-aluminum carbonate sorbent for high-temperature CO2 capture in fixed-bed reactor[J]. Fuel, 2014, 122: 179-185. |
50 | KOU X C , LI C , ZHAO Y J , et al . CO2 sorbents derived from capsule-connected Ca-Al hydrotalcite-like via low-saturated coprecipitation[J].Fuel Processing Technology, 2018, 177: 210-218. |
51 | HU Y C , LIU W Q , CHEN H Q , et al . Screening of inert solid supports for CaO -based sorbents for high temperature CO2 capture[J]. Fuel, 2016, 181: 199-206. |
52 | ALBRECHT K O , WAGENBACH K S , SATRIO J A , et al . Development of a CaO-based CO2 sorbent with improved cyclic stability[J]. Industrial & Engineering Chemistry Research, 2008, 47 (20): 7841-7848. |
53 | LUO C , ZHENG Y , DING N , et al . Development and performance of CaO/La2O3 sorbents during calcium looping cycles for CO2 capture[J]. Industrial & Engineering Chemistry Research, 2010, 49 (22):11778-11784. |
54 | KOIRALA R , REDDY G K , LEE J Y , et al . Influence of foreign metal dopants on the durability and performance of Zr/Ca sorbents during high temperature CO2 capture[J]. Separation Science and Technology, 2014, 49: 47-54. |
55 | HLAING N N , SREEKANTAN S , OTHMAN R , et al . A novel (Zr-Ce) incorporated Ca(OH)2 nanostructure as a durable adsorbent for CO2 capture[J]. Materials Letters, 2014, 133: 204-207. |
56 | GUO H X , FENG J Q , ZHAO Y J , et al . Effect of micro-structure and oxygen vacancy on the stability of (Zr-Ce)-additive CaO-based sorbent in CO2 adsorption[J]. Journal of CO2 Utilization, 2017, 19: 165-176. |
57 | GUO H X , KOU X C , ZHAO Y J , et al . Effect of synergistic interaction between Ce and Mn on the CO2 capture of calcium-based sorbent: textural properties, electron donation, and oxygen vacancy[J]. Chemical Engineering Journal, 2018, 334: 237-246. |
58 | GUO H X , KOU X C , ZHAO Y J , et al . Role of microstructure, electron transfer, and coordination state in the CO2 capture of calcium-based sorbent by doping (Zr-Mn) [J]. Chemical Engineering Journal, 2018, 336: 376-385. |
59 | LIU F Q , LI W H , LIU B C , et al . Synthesis, characterization, and high temperature CO2 capture of new CaO based hollow sphere sorbents[J]. Journal of Materials Chemistry A, 2013, 27: 8037-8044. |
60 | BRODA M , MÜLLER C R . Synthesis of highly efficient, Ca-based, Al2O3-stabilized, carbon gel-templated CO2 sorbents[J]. Advanced Materials, 2012, 24 (22): 3059-3064. |
61 | 沈辉 . 氧化钙基吸附剂的制备及其CO2吸附性能研究[D]. 天津:天津大学,2018. |
SHEN Hui . Research on the preparation and CO2 capture performance of CaO based adsorbents[D]. Tianjin: Tianjin University, 2018. | |
62 | FENG J Q , GUO H X , WANG S P , et al . Fabrication of multi-shelled hollow Mg-modified CaCO3 microspheres and their improved CO2 adsorption performance[J]. Chemical Engineering Journal, 2017, 321: 401-411. |
63 | 赵丽娜,孔治国,王继库 .聚丙烯酸钠存在下蝶状文石型碳酸钙的合成研究[J]. 化学通报,2012,75(12):1140-1144. |
ZHAO Lina , KONG Zhiguo , WANG Jiku . Synthesis of butterfly-like aragonite calcium carbonate in the presence of sodium polyacrylate[J]. Chemistry, 2012, 75(12): 1140-1144. | |
64 | WANG S P , FAN L J , LI C , et al . Porous spherical CaO-based sorbents via PSS-assisted fast precipitation for CO2 capture[J]. ACS Applied Materials & Interfaces, 2014, 6: 18072-18077. |
[1] | WANG Jiaqing, SONG Guangwei, LI Qiang, GUO Shuaicheng, DAI Qingli. Rubber-concrete interface modification method and performance enhancement path [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 328-343. |
[2] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[3] | ZHU Jie, JIN Jing, DING Zhenghao, YANG Huipan, HOU Fengxiao. Modification of CaSO4 oxygen carrier by Zhundong coal ash in chemical looping gasification and its mechanism [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4628-4635. |
[4] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[5] | LI Xuejia, LI Peng, LI Zhixia, JIN Dunshang, GUO Qiang, SONG Xufeng, SONG Peng, PENG Yuelian. Experimental comparation on anti-scaling and anti-wetting ability of hydrophilic and hydrophobic modified membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4458-4464. |
[6] | CHEN Junjun, FEI Chang’en, DUAN Jintang, GU Xueping, FENG Lianfang, ZHANG Cailiang. Research progress on chemical modification of polyether ether ketone for the high bioactivity [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4015-4028. |
[7] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
[8] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[9] | TAN Lipeng, SHEN Jun, WANG Yugao, LIU Gang, XU Qingbai. Research progress on blending modification of coal tar pitch and petroleum asphalt [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3749-3759. |
[10] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
[11] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[12] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[13] | YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974. |
[14] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[15] | WU Fengzhen, LIU Zhiwei, XIE Wenjie, YOU Yating, LAI Rouqiong, CHEN Yandan, LIN Guanfeng, LU Beili. Preparation of biomass derived Fe/N co-doped porous carbon and its application for catalytic degradation of Rhodamine B via peroxymonosulfate activation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3292-3301. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |