Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 334-343.DOI: 10.16085/j.issn.1000-6613.2018-1280
• Industrial catalysis • Previous Articles Next Articles
Size ZHANG1(),Chao WAN1,Liang ZENG2,Dangguo CHENG1(),Fengqiu CHEN1,Jinlong GONG2()
Received:
2018-06-21
Revised:
2018-10-12
Online:
2019-01-05
Published:
2019-01-05
Contact:
Dangguo CHENG,Jinlong GONG
张思泽1(),万超1,曾亮2,程党国1(),陈丰秋1,巩金龙2()
通讯作者:
程党国,巩金龙
作者简介:
张思泽(1994—),男,硕士研究生。E-mail:<email>21628025@zju.edu.cn</email>。|程党国,教授。E-mail:<email>dgcheng@zju.edu.cn</email>|巩金龙,教授。E-mail:<email>jlgong@tju.edu.cn</email>
基金资助:
CLC Number:
Size ZHANG, Chao WAN, Liang ZENG, Dangguo CHENG, Fengqiu CHEN, Jinlong GONG. Oxidative dehydrogenation of butene over bismuth molybdate catalysts: synergetic effect between different crystalline phases[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 334-343.
张思泽, 万超, 曾亮, 程党国, 陈丰秋, 巩金龙. 丁烯氧化脱氢钼铋系催化剂:晶相之间的协同效应[J]. 化工进展, 2019, 38(01): 334-343.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1280
催化剂 | 反应温度/℃ | 实验变量 | 最优活性① | ||
---|---|---|---|---|---|
S/% | Y/% | TOS/h | |||
α-Bi2(MoO4)3 [ | 420 | 单相 | 74 | 27 | 48 |
β-Bi2Mo2O9 [ | 420 | 单相(不稳定) | 92 | 60 | 100 |
γ-Bi2MoO6 [ | 420 | 制备pH = 3 | 90 | 46 | 12 |
440 | 丁烯∶氧气 = 1∶0.75 | 91 | 47 | 48 | |
β-Bi2Mo2O9 + γ-Bi2MoO6 [ | 420 | β + 32% γ 混合相(摩尔分数) | 73 | 29 | null |
α-Bi2(MoO4)3 + γ-Bi2MoO6 [ | 420 | α + 90% γ 混合相(质量分数) | 90 | 59 | null |
催化剂 | 反应温度/℃ | 实验变量 | 最优活性① | ||
---|---|---|---|---|---|
S/% | Y/% | TOS/h | |||
α-Bi2(MoO4)3 [ | 420 | 单相 | 74 | 27 | 48 |
β-Bi2Mo2O9 [ | 420 | 单相(不稳定) | 92 | 60 | 100 |
γ-Bi2MoO6 [ | 420 | 制备pH = 3 | 90 | 46 | 12 |
440 | 丁烯∶氧气 = 1∶0.75 | 91 | 47 | 48 | |
β-Bi2Mo2O9 + γ-Bi2MoO6 [ | 420 | β + 32% γ 混合相(摩尔分数) | 73 | 29 | null |
α-Bi2(MoO4)3 + γ-Bi2MoO6 [ | 420 | α + 90% γ 混合相(质量分数) | 90 | 59 | null |
项目 | 金属 | |||||||
---|---|---|---|---|---|---|---|---|
Ni | Co | Fe | Mg | Mn | Cd | Ca | Pb | |
离子半径 /? | 0.69 | 0.72 | 0.74 | 0.66 | 0.80 | 0.97 | 0.99 | 1.20 |
稳定性 结构 | α-CoMoO4型(单斜晶系) M(Ⅱ):6-配位; M6+:6-配位 | CaWO4型(白钨矿,四方晶系) M(Ⅱ)∶8-配位;M6+∶4-配位 | ||||||
α-MnMoO4型 M(Ⅱ):6-配位; M6+:4-配位 |
项目 | 金属 | |||||||
---|---|---|---|---|---|---|---|---|
Ni | Co | Fe | Mg | Mn | Cd | Ca | Pb | |
离子半径 /? | 0.69 | 0.72 | 0.74 | 0.66 | 0.80 | 0.97 | 0.99 | 1.20 |
稳定性 结构 | α-CoMoO4型(单斜晶系) M(Ⅱ):6-配位; M6+:6-配位 | CaWO4型(白钨矿,四方晶系) M(Ⅱ)∶8-配位;M6+∶4-配位 | ||||||
α-MnMoO4型 M(Ⅱ):6-配位; M6+:4-配位 |
催化剂 | 晶相 | 反应温度/℃ | 最优活性① | TPRO峰/℃ | ||
---|---|---|---|---|---|---|
S/% | Y/% | TOS/h | ||||
BiMoCe0.2 [ | Ce(MoO4)2, α-Bi2(MoO4)3, β-Bi2Mo2O9, γ-Bi2MoO6 | 440 | 96 | 70 | 2 | 183 |
BiMoLa0.2 [ | La2(MoO4)3, α-Bi2(MoO4)3, β-Bi2Mo2O9, γ-Bi2MoO6 | 440 | 95 | 71 | 100 | 174 |
BiMoZr0.4 [ | Zr(MoO4)2, α-Bi2(MoO4)3, β-Bi2Mo2O9, γ-Bi2MoO6 | 440 | 91 | 68 | 2 | 171 |
BiV0.6Mo0.4 [ | Bi0.93Mo0.21V0.79O4, γ-Bi2MoO6 | 420 | 89 | 64 | 8 | 181 |
BiMoV0.15 [ | BiVO4, α-Bi2(MoO4)3, β-Bi2Mo2O9, γ-Bi2MoO6 | 440 | 96 | 73 | 2 | 180 |
BiMoFe0.65 [ | Fe2(MoO4)3, α-Bi2(MoO4)3, β-Bi2Mo2O9, γ-Bi2MoO6 | 420 | 91 | 63 | 6 | 155 |
催化剂 | 晶相 | 反应温度/℃ | 最优活性① | TPRO峰/℃ | ||
---|---|---|---|---|---|---|
S/% | Y/% | TOS/h | ||||
BiMoCe0.2 [ | Ce(MoO4)2, α-Bi2(MoO4)3, β-Bi2Mo2O9, γ-Bi2MoO6 | 440 | 96 | 70 | 2 | 183 |
BiMoLa0.2 [ | La2(MoO4)3, α-Bi2(MoO4)3, β-Bi2Mo2O9, γ-Bi2MoO6 | 440 | 95 | 71 | 100 | 174 |
BiMoZr0.4 [ | Zr(MoO4)2, α-Bi2(MoO4)3, β-Bi2Mo2O9, γ-Bi2MoO6 | 440 | 91 | 68 | 2 | 171 |
BiV0.6Mo0.4 [ | Bi0.93Mo0.21V0.79O4, γ-Bi2MoO6 | 420 | 89 | 64 | 8 | 181 |
BiMoV0.15 [ | BiVO4, α-Bi2(MoO4)3, β-Bi2Mo2O9, γ-Bi2MoO6 | 440 | 96 | 73 | 2 | 180 |
BiMoFe0.65 [ | Fe2(MoO4)3, α-Bi2(MoO4)3, β-Bi2Mo2O9, γ-Bi2MoO6 | 420 | 91 | 63 | 6 | 155 |
催化剂 | 晶相 | 最优活性① | ||
---|---|---|---|---|
S/% | Y/% | TOS/h | ||
Co9Fe3Bi1Mo12O51 [ | α-CoMoO4, β-CoMoO4, α-Bi2(MoO4)3, γ-Bi2MoO6, Fe2(MoO4)3 | 93 | 61 | 6 |
Ni9Fe3Bi1Mo12O51 [ | α-NiMoO4, β-NiMoO4, α-Bi2(MoO4)3, γ-Bi2MoO6, Fe2(MoO4)3 | 90 | 53 | 6 |
Mn9Fe3Bi1Mo12O51 [ | α-MnMoO4, α-Bi2(MoO4)3, γ-Bi2MoO6, Fe2(MoO4)3 | 90 | 48 | 6 |
Mg9Fe3Bi1Mo12O51 [ | β-MgMoO4,α-Bi2(MoO4)3, γ-Bi2MoO6, Fe2(MoO4)3 | 91 | 47 | 6 |
Zn9Fe3Bi1Mo12O51 [ | α-ZnMoO4, α-Bi2(MoO4)3, γ-Bi2MoO6, Fe2(MoO4)3 | 92 | 40 | 6 |
BiFe0.65Ni0.05Mo[ | Bi3Mo2Fe1O12[derived α-Bi2(MoO4)3], Fe2(MoO4)3, NiMoO4 | 84 | 72 | 14 |
BiFe0.65Co0.05Mo[ | Bi3Mo2Fe1O12[derived α-Bi2(MoO4)3], Fe2(MoO4)3, CoMoO4 | 82 | 68 | 14 |
BiFe0.65Zn0.05Mo[ | Bi3Mo2Fe1O12[derived α-Bi2(MoO4)3], Fe2(MoO4)3, ZnMoO4 | 86 | 67 | 14 |
BiFe0.65Mn0.05Mo[ | Bi3Mo2Fe1O12[derived α-Bi2(MoO4)3], Fe2(MoO4)3, MnMoO4 | 85 | 64 | 14 |
BiFe0.65Cu0.05Mo[ | Bi3Mo2Fe1O12[derived α-Bi2(MoO4)3], Fe2(MoO4)3, CuMoO4 | 78 | 46 | 14 |
催化剂 | 晶相 | 最优活性① | ||
---|---|---|---|---|
S/% | Y/% | TOS/h | ||
Co9Fe3Bi1Mo12O51 [ | α-CoMoO4, β-CoMoO4, α-Bi2(MoO4)3, γ-Bi2MoO6, Fe2(MoO4)3 | 93 | 61 | 6 |
Ni9Fe3Bi1Mo12O51 [ | α-NiMoO4, β-NiMoO4, α-Bi2(MoO4)3, γ-Bi2MoO6, Fe2(MoO4)3 | 90 | 53 | 6 |
Mn9Fe3Bi1Mo12O51 [ | α-MnMoO4, α-Bi2(MoO4)3, γ-Bi2MoO6, Fe2(MoO4)3 | 90 | 48 | 6 |
Mg9Fe3Bi1Mo12O51 [ | β-MgMoO4,α-Bi2(MoO4)3, γ-Bi2MoO6, Fe2(MoO4)3 | 91 | 47 | 6 |
Zn9Fe3Bi1Mo12O51 [ | α-ZnMoO4, α-Bi2(MoO4)3, γ-Bi2MoO6, Fe2(MoO4)3 | 92 | 40 | 6 |
BiFe0.65Ni0.05Mo[ | Bi3Mo2Fe1O12[derived α-Bi2(MoO4)3], Fe2(MoO4)3, NiMoO4 | 84 | 72 | 14 |
BiFe0.65Co0.05Mo[ | Bi3Mo2Fe1O12[derived α-Bi2(MoO4)3], Fe2(MoO4)3, CoMoO4 | 82 | 68 | 14 |
BiFe0.65Zn0.05Mo[ | Bi3Mo2Fe1O12[derived α-Bi2(MoO4)3], Fe2(MoO4)3, ZnMoO4 | 86 | 67 | 14 |
BiFe0.65Mn0.05Mo[ | Bi3Mo2Fe1O12[derived α-Bi2(MoO4)3], Fe2(MoO4)3, MnMoO4 | 85 | 64 | 14 |
BiFe0.65Cu0.05Mo[ | Bi3Mo2Fe1O12[derived α-Bi2(MoO4)3], Fe2(MoO4)3, CuMoO4 | 78 | 46 | 14 |
1 | 杨为民 . 碳四烃转化与利用技术研究进展及发展前景[J]. 化工进展, 2015, 34(1): 1-9. |
YANG W M . Progress and perspectives on conversion and utilization of C4 hydrocarbons[J]. Chemical Industry and Engineering Progress, 2015, 34(1):1-9. | |
2 | JUNG J C , LEE H , SONG I K . Production of 1,3-butadiene from C-4 raffinate-3 through oxidative dehydrogenation of n-butene over bismuth molybdate catalysts[J]. Catalysis Surveys from Asia, 2009, 13(2): 78-93. |
3 | JUNG J C , KIM H , CHUNG Y , et al . Unusual catalytic behavior of beta-Bi2Mo2O9 in the oxidative dehydrogenation of n-butene to 1,3-butadiene[J]. Journal of Molecular Catalysis A: Chemical, 2007, 264(1/2): 237-240. |
4 | JUNG J C , KIM H , CHOI A S , et al . Preparation, characterization, and catalytic activity of bismuth molybdate catalysts for the oxidative dehydrogenation of n-butene into 1,3-butadiene[J]. ournal of Molecular Catalysis A: Chemical, 2006, 259(1/2): 166-170. |
5 | JUNG J C , LEE H , KIM H , et al . A synergistic effect of alpha-Bi2Mo3O12 and gamma-Bi2MoO6 catalysts in the oxidative dehydrogenation of C-4 raffinate-3 to 1,3-butadiene[J]. Journal of Molecular Catalysis A: Chemical, 2007, 271(1/2): 261-265. |
6 | SOARES A P V , DIMITROV L D , DE OLIVEIRA M C R A , et al . Synergy effects between beta and gamma phases of bismuth molybdates in the selective catalytic oxidation of 1-butene[J]. Applied Catalysis A: General, 2003, 253(1): 191-200. |
7 | WAN C , CHENG D G , CHEN F Q , et al . The role of active phase in Ce modified BiMo catalysts for oxidative dehydrogenation of 1-butene[J]. Catalysis Today, 2016, 264: 180-184. |
8 | WAN C , CHENG D G , CHEN F Q , et al . Characterization and kinetic study of BiMoLa x oxide catalysts for oxidative dehydrogenation of 1-butene to 1,3-butadiene[J]. Chemical Engineering Science, 2015, 135: 553-558. |
9 | JUNG J C , LEE H , SEO J G , et al . Oxidative dehydrogenation of n-butene to 1,3-butadiene over multicomponent bismuth molybdate (MII 9Fe3Bi1Mo12O51) catalysts: effect of divalent metal (MII)[J]. Catalysis Today, 2009, 141(3/4): 325-329. |
10 | MORO-OKA Y , UEDA W . Multicomponent bismuth molybdate catalyst: a highly functionalized catalyst system for the selective oxidation of olefin[J]. Advances in Catalysis, 1994, 40: 233-273. |
11 | WAN C , CHENG D G , CHEN F Q , et al . Effects of zirconium content on the catalytic performance of BiMoZr x in the oxidative dehydrogenation of 1-butene to 1,3-butadiene[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(2): 353-358. |
12 | PARK J H , SHIN C H . Influence of the catalyst composition in the oxidativedehydrogenation of 1-butene over BiV x Mo1− x oxide catalysts[J]. Applied Catalysis A: General, 2015, 495: 1-7. |
13 | PARK J H , SHIN C H . Oxidative dehydrogenation of butenes to butadiene over Bi-Fe-Me(Me=Ni, Co, Zn, Mn and Cu)-Mo oxide catalysts[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 683-688. |
14 | WAN C , CHENG D G , CHEN F Q , et al . Oxidative dehydrogenation of 1-butene over vanadium modified bismuth molybdate catalyst: an insight into mechanism[J]. RSC Advances, 2015, 5(53): 42609-42615. |
15 | PARK J H , SHIN C H . Influence of phosphorous addition on Bi3Mo2Fe1 oxide catalysts for the oxidative dehydrogenation of 1-butene[J]. Korean Journal of Chemical Engineering, 2016, 33(3): 823-830. |
16 | MARS P , VAN KREVELEN D W . Oxidations carried out by means of vanadium oxide catalysts[J]. Chemical Engineering Science, 1954, 3: 41-59. |
17 | ZHAI Z , WANG X , LICHT R , et al . Selective oxidation and oxidative dehydrogenation of hydrocarbons on bismuth vanadium molybdenum oxide[J]. Journal of Catalysis, 2015, 325: 87-100. |
18 | GOLUNSKI S E , WALKER A P . Mechanism of low-temperature oxydehydrogenation of 1-butene to 1,3-butadiene over a novel Pd-Fe-O catalyst[J]. Journal of Catalysis, 2001, 204(1): 209-218. |
19 | CENTI G , TRIFIRO F . Some aspects of the control of selectivity in catalytic-oxidation on mixed oxides: a review[J]. Applied Catalysis, 1984, 12(1): 1-21. |
20 | GRASSELLI R K . Fundamental principles of selective heterogeneous oxidation atalysis[J]. Topics in Catalysis, 2002, 21(1/2/3): 79-88. |
21 | ROYER S , DUPREZ D , KALIAGUINE S . Oxygen mobility in LaCoO3 perovskites[J]. Catalysis Today, 2006, 112(1/2/3/4): 99-102. |
22 | CAVANI F , TRIFIRO F . Some aspects that affect the selective oxidation of paraffins[J]. Catalysis Today, 1997, 36: 431-439. |
23 | GRABOWSKI R . Kinetics of oxidative dehydrogenation of C2-C3 alkanes on oxide catalysts[J]. Catalysis Reviews, 2006, 48: 199. |
24 | VEDRINE J C . Acid-base characterization of heterogeneous catalysts: an up-to-date overview[J]. Research on Chemical Intermediates, 2015, 41(12): 9387-9423. |
25 | RAO T S R P , KRISHNAMURTHY K R . Role of iron in multicomponent molybdate catalysts for selective oxidation of propylene[J]. Journal of Catalysis, 1985, 95(1): 209-219. |
26 | KEULKS G W . Mechanism of oxygen atom incorporation into products of propylene oxidation over bismuth molybdate[J]. Journal of Catalysis, 1970, 19(2): 232-235. |
27 | BATIST P , LIPPENS B , SCHUIT G . Catalytic oxidation of 1-butene over bismuth molybdate catalysts: II. Dependence of activity and selectivity on catalyst composition[J]. Journal of Catalysis, 1966, 5(1): 55-64. |
28 | MATSUURA I , SCHUT R , HIRAKAWA K . The surface-structure of the active bismuth molybdate catalyst[J]. Journal of Catalysis, 1980, 63(1): 152-166. |
29 | BATIST P A , DER KINDEREN A H W M , LEEUWENBURGH Y , et al . Catalytic oxidation of 1-butene over bismuth molybdate catalysts: Ⅳ. Dependence of activity on structures of catalysts[J]. Journal of Catalysis, 1968, 12(1): 45-60. |
30 | JUNG J C , KIM H , CHOI A S , et al . Effect of pH in the preparation of gamma-Bi2MoO6 for oxidative dehydrogenation of n-butene to 1,3-butadiene: correlation between catalytic performance and oxygen mobility of gamma-Bi2MoO6 [J]. Catalysis Communications, 2007, 8(3): 625-628. |
31 | JUNG J C , LEE H , PARK D R , et al . Effect of calcination temperature on the catalytic performance of gamma-Bi2MoO6 in the oxidative dehydrogenation of n-butene to 1,3-butadiene[J]. Catalysis Letters, 2009, 131(3/4): 401-405. |
32 | JUNG J C , KIM H , KIM Y S , et al . Catalytic performance of bismuth molybdate catalysts in the oxidative dehydrogenation of C-4 raffinate-3 to 1,3-butadiene[J]. Applied Catalysis A: General, 2007, 317(2): 244-249. |
33 | WRAGG R D , ASHMORE P G , HOCKEY J A . Selective oxidation of propene over bismuth molybdate catalysts: the oxidation of propene using 18O labeled oxygen and catalyst[J]. Journal of Catalysis, 1971, 22(1): 49-53. |
34 | BRAZDIL J F , SURESH D D , GRASSELLI R K . Redox kinetics of bismuth molybdate ammoxidation catalysts[J]. Journal of Catalysis, 1980, 66(2): 347-367. |
35 | ERTL G , KNOZINGER H , WEITKAMP J . Handbook of heterogeneous catalysis[M]. VCH, 1997: 290. |
36 | VEJUX A , COURTINE P . Interfacial reactions between V2O5 and TiO2 (anatase): role of structural-properties[J]. Journal of Solid State Chemistry, 1978, 23(1/2): 93-103. |
37 | VAN OEFFELEN D A G , VAN HOOFF J H C , SCHUIT G C A . In situ measurements of the electrical-conductivity of bismuth molybdate catalysts in operation for oxidative dehydrogenation of butene[J]. Journal of Catalysis, 1985, 95(1): 84-100. |
38 | BRAZDIL J F , GLAESER L C , GRASSELLI R K . An investigation of the role of bismuth and defect cation vacancies in selective oxidation and ammoxidation catalysis[J]. Journal of Catalysis, 1983, 81(1): 142-146. |
39 | NOTERMANN T , KEULKS G W , SKLIAROV A , et al . Physicochemical properties of bismuth iron molybdate system[J]. Journal of Catalysis, 1975, 39(2): 286-293. |
40 | AYKAN K , HALVORSON D , SLEIGHT A W , et al . Olefin oxidation and ammoxidation studies over molybdate, tungstate, and vanadate catalysts having point-defects[J]. Journal of Catalysis, 1974, 35(3): 401-406. |
41 | BRAZDIL J F , GRASSELLI R K . Relationship between solid-state structure and catalytic activity of rare-earth and bismuth-containing molybdate ammoxidation catalysts[J]. Journal of Catalysis, 1983, 79(1): 104-117. |
42 | SMITH G W , IBERS J A . Crystal structure of cobalt molybdate CoMoO4 [J]. Acta Crystallographica, 1965, 19: 269-275. |
43 | ABRAHAMS S C , REDDY J M . Crystal structure of the transition-metal molybdates: Ⅰ. Paramagnetic alpha-MnMoO4 [J]. Journal of Chemical Physics, 1965, 43(7): 2533-2543. |
44 | LECIEJEWICZ J . A neutron crystallographic investigation of lead molybdenum oxide PbMoO4 [J]. Zeitschrift Fur Kristallographie, 1965, 121(2/3/4): 158-164. |
45 | WENG L , DELMON B . Phase cooperation and remote-control effects in selective oxidation catalysts[J]. Applied Catalysis A: General, 1992, 81(2): 141-213. |
46 | SCHUH K , KLEIST W , HOJ M , et al . Bismuth molybdate catalysts prepared by mild hydrothermal synthesis: influence of pH on the selective oxidation of propylene[J]. Catalysts, 2015, 5(3): 1554-1573. |
47 | BRAZDIL J F , TOFT M A , LIN S S Y , et al . Characterization of bismuth-cerium-molybdate selective propylene ammoxidation catalysts[J]. Applied Catalysis A: General, 2015, 495: 115-123. |
48 | PARK J H , NOH H , PARK J W , et al . Effects of iron content on bismuth molybdate for the oxidative dehydrogenation of n-butenes to 1,3-butadiene[J]. Applied Catalysis A: General, 2012, 431/432: 137-143. |
49 | PONCEBLANC H . Study of multiphasic molybdate-based catalysts: Ⅰ. Electrical-conductivity study of valence states and solubility limits in mixed iron and cobalt molybdates[J]. Journal of Catalysis, 1993, 142(2): 373-380. |
50 | MILLET J . Study of multiphasic molybdate-based catalysts: Ⅱ. Synergy effect between bismuth molybdates and mixed iron and cobalt molybdates in mild oxidation of propene[J]. Journal of Catalysis, 1993, 142(2): 381-391. |
51 | SUN Y N , TAO L , YOU T Z , et al . Effect of sulfation on the performance of Fe2O3/Al2O3 catalyst in catalytic dehydrogenation of propane to propylene[J]. Chemical Engineering Journal, 2014, 244: 145-151. |
52 | UEDA W , MORO-OKA Y , IKAWA T . Study of ternary-component bismuth molybdate catalysts by 18O2 tracer in the oxidation of propylene to acrolein[J]. Journal of Catalysis, 1981, 70: 409-417. |
53 | PARK J H , ROW K , SHIN C H . Oxidative dehydrogenation of 1-butene to 1,3-butadiene over BiFe0.65Ni x Mo oxide catalysts: effect of nickel content[J]. Catalysis Communications, 2013, 31: 76-80. |
54 | UEDA W , CHEN C L , ASAKAWA K , et al . Catalytic properties of tricomponent metal oxides having the scheelite structure: Ⅱ. Structural stability in the reduction oxidation cycle[J]. Journal of Catalysis, 1986, 101: 369-375. |
55 | UEDA W , ASAKAWA K , CHEN C L , et al . Catalytic properties of tricomponent metal oxides having the scheelite structure: Ⅰ. Role of bulk diffusion of lattice oxide ions in the oxidation of propylene[J]. Journal of Catalysis, 1986, 101: 360-368. |
56 | HE D , UEDA W , MORO-OKA Y . Promotion effect of molybdate support on Bi2Mo3O12 catalyst in the selective oxidative of propylene[J]. Catalysis Letters, 1992, 12(1/2/3): 35-44. |
57 | MATSUURA I . Active bismuth molybdate on Me2+-molybdate based catalysts[J]. Studies in Surface Science & Catalysis, 1981, 7: 1099-1112. |
58 | PONCEBLANC H , MILLET J M M , COUDURIER G , et al . Solid solid-phase equilibria in the binary system CoMoO4-FeMoO4 and effect of FeIII on the phase equilibria[J]. Journal of Physical Chemistry, 1992, 96(23): 9462-9465. |
59 | KRYLOV O V , MAKSIMOV Y V , MARGOLIS L Y . In situ study of ferric molybdate rearrangement in partial propylene oxidation[J]. Journal of Catalysis, 1985, 95(1): 289-292. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |