Chemical Industry and Engineering Progress ›› 2019, Vol. 38 ›› Issue (01): 155-170.DOI: 10.16085/j.issn.1000-6613.2018-1227
• Chemical processes and equipment • Previous Articles Next Articles
Chenxi ZHANG(),Dali CAI,Zhao JIA,Yu CUI,Yao WANG,Guohua LUO,Weizhong QIAN,Fei WEI()
Received:
2018-06-12
Revised:
2018-08-19
Online:
2019-01-05
Published:
2019-01-05
Contact:
Fei WEI
张晨曦(),蔡达理,贾瞾,崔宇,王垚,罗国华,骞伟中,魏飞()
通讯作者:
魏飞
作者简介:
张晨曦(1991—),男,助理研究员,研究方向为气固流态化。E-mail:<email>zhangcx2018@mail.tsinghua.edu.cn</email>。|魏飞,教授,博士生导师,研究方向为气固流态化与纳米材料。E-mail:<email>wf-dce@mail. tsinghua.edu.cn</email>。
基金资助:
CLC Number:
Chenxi ZHANG, Dali CAI, Zhao JIA, Yu CUI, Yao WANG, Guohua LUO, Weizhong QIAN, Fei WEI. Non-uniform gas solids distribution in fluidized beds[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 155-170.
张晨曦, 蔡达理, 贾瞾, 崔宇, 王垚, 罗国华, 骞伟中, 魏飞. 流化床中气固均匀分布的失稳现象[J]. 化工进展, 2019, 38(01): 155-170.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2018-1227
N=路径数目 | 2N+1=未知量 | N+1=约束方程 | N=自由度 |
---|---|---|---|
2 | 5 | 3 | 2 |
3 | 7 | 4 | 3 |
4 | 9 | 5 | 4 |
6 | 13 | 7 | 6 |
8 | 17 | 9 | 8 |
12 | 25 | 13 | 12 |
N=路径数目 | 2N+1=未知量 | N+1=约束方程 | N=自由度 |
---|---|---|---|
2 | 5 | 3 | 2 |
3 | 7 | 4 | 3 |
4 | 9 | 5 | 4 |
6 | 13 | 7 | 6 |
8 | 17 | 9 | 8 |
12 | 25 | 13 | 12 |
参数 | 数值 |
---|---|
气体 | |
类型 | 空气 |
密度/kg·m-3 | 1.225 |
黏度/kg·ms-1 | 1.79×10-5 |
固体颗粒 | |
类型 | B类颗粒 |
密度/kg·m-3 | 2600 |
平均粒径/μm | 300 |
颗粒装填量/kg | 10 |
参数 | 数值 |
---|---|
气体 | |
类型 | 空气 |
密度/kg·m-3 | 1.225 |
黏度/kg·ms-1 | 1.79×10-5 |
固体颗粒 | |
类型 | B类颗粒 |
密度/kg·m-3 | 2600 |
平均粒径/μm | 300 |
颗粒装填量/kg | 10 |
操作参数 | 案例A | 案例B |
---|---|---|
原料组成 | PCT∶NH3∶Air | PCT∶NH3∶Air |
反应器直径D/m | 1.2 | 1.2 |
催化剂装填量/kg | 7000 | 4650 |
静床高H/m | 7.29 | 4.84 |
高径比H/D | 约6 | 约4 |
反应温度/K | 483 | 483 |
操作压力/kPa | 101.3 | 101.3 |
表观气速U g/m·s-1 | 0.3 | 0.3 |
操作参数 | 案例A | 案例B |
---|---|---|
原料组成 | PCT∶NH3∶Air | PCT∶NH3∶Air |
反应器直径D/m | 1.2 | 1.2 |
催化剂装填量/kg | 7000 | 4650 |
静床高H/m | 7.29 | 4.84 |
高径比H/D | 约6 | 约4 |
反应温度/K | 483 | 483 |
操作压力/kPa | 101.3 | 101.3 |
表观气速U g/m·s-1 | 0.3 | 0.3 |
操作参数 | 数值 |
---|---|
进料 | ONT∶H2 |
操作温度/K | 523 |
操作压力/kPa | 121.3 |
反应器直径D/m | 2.2 |
催化剂装填量/kg | 8500 |
静床高H/m | 约3 |
催化剂平均粒径d p/μm | 120 |
催化剂堆密度/kg·m-3 | 750 |
表观气速U g/m·s-1 | 0.10,0.15,0.20,0.25 |
操作参数 | 数值 |
---|---|
进料 | ONT∶H2 |
操作温度/K | 523 |
操作压力/kPa | 121.3 |
反应器直径D/m | 2.2 |
催化剂装填量/kg | 8500 |
静床高H/m | 约3 |
催化剂平均粒径d p/μm | 120 |
催化剂堆密度/kg·m-3 | 750 |
表观气速U g/m·s-1 | 0.10,0.15,0.20,0.25 |
操作参数 | 数值 |
---|---|
进料 | IPN∶Cl2∶N2 |
操作温度/K | 573 |
操作压力/kPa | 101.3 |
催化剂装填量/kg | 2400 |
催化剂平均粒径d p/μm | 120 |
催化剂平均堆密度/kg·m-3 | 500 |
表观气速U g /m·s-1 | 0.1 |
分布器阻力系数/C d | 25000,55000,75000 |
操作参数 | 数值 |
---|---|
进料 | IPN∶Cl2∶N2 |
操作温度/K | 573 |
操作压力/kPa | 101.3 |
催化剂装填量/kg | 2400 |
催化剂平均粒径d p/μm | 120 |
催化剂平均堆密度/kg·m-3 | 500 |
表观气速U g /m·s-1 | 0.1 |
分布器阻力系数/C d | 25000,55000,75000 |
1 | KUNII D , LEVENSPIEL O . Fluidization engineering[M]. New York: Wiley, 1969. |
2 | BI H T , ELLIS N , GRACE J R . A state-of-art review of gas-solid turbulent fluidization[J]. Chem. Eng. Sci., 2000, 55: 4789-4825. |
3 | ZHOU Z Y , YU A B , ZULLI P . Particle scale study of heat transfer in packed and bubbling fluidized beds[J]. AIChE J., 2009, 55: 868-884. |
4 | SOBRINO C , ELLIS N , VEGA M . Distributor effects near the bottom region of turbulent fluidized beds[J]. Powder Tech., 2009, 189: 25-33. |
5 | AGARWAL G , LATTIMER B , EKKAD S , et al . Experimental study on solid circulation in a multiple jet fluidized bed[J]. AIChE J., 2012, 58: 3003-3015. |
6 | ARGENTINA M , CLERC M G , SOTO R . Van der Waals–like transition in fluidized granular matter[J]. Phys. Rev. Lett., 2002, 89: 044301. |
7 | GLASSER B J , SUNDARESAN S , KEVREKIDIS I G . From bubbles to clusters in fluidized beds[J]. Phys. Rev. Lett., 1998, 81: 1849-1852. |
8 | NAMARA S M , YOUNG W R . Inelastic collapse in two dimensions[J]. Phys. Rev. E, 1994, 50: 50-67. |
9 | ZHANG C X , QIAN W Z , WEI F . Uniform bubble growth in fluidized bed and its stability analysis[C]// The 12th International Conference on Fluidized Bed Technology, Kraków, Poland, 2017. |
10 | QURESHI A E , CREASY D E . Fluidised bed gas distributors[J]. Powder Tech., 1979, 22: 113-119. |
11 | GELDART D , BAYERNS J . The design of distributors for gas fluidized beds[J]. Powder Tech., 1985, 42: 67-78. |
12 | SATHIYAMOORTHY D , HORIO M . On the influence of aspect ratio and distributor in gas fluidized beds[J]. Chem. Eng. J., 2003, 93: 151-161. |
13 | THORPE R B , DAVIDSON J F , POLLITT M , et al . Maldistribution in fluidized beds[J]. Ind. Eng. Chem. Res., 2002, 41: 5878-5889. |
14 | DU B , WARSITO W , FAN L S . Bed nonhomogeneity in turbulent gas-solid fluidization[J]. AIChE J., 2003, 49: 1109-1126. |
15 | DEPYPERE F , PIETERS J G , DEWETTINCK K . CFD analysis of air distribution in fluidized bed equipment[J]. Powder Tech., 2004, 145: 176-189. |
16 | COCCO R , ISSANGYA A , KARRI S B R , et al . Understanding streaming flow in deep fluidized beds[C]// AIChE Annual Meeting: Particle Technology Forum. Reno, USA, 2001. |
17 | DONG S Q , CAO C Q , SHI C D , et al . Effect of perforated ratios of distributor on the fluidization characteristics in a gas-solid fluidized bed[J]. Ind. Eng. Chem. Res., 2009, 48: 517- 527. |
18 | SÁNCHEZ-PRIETO J , SORIA-VERDUGO A , GÓMEZ-HERNÁNDEZ J , et al . Maldistribution detection in bubbling fluidized beds[J]. Chem. Eng. J., 2015, 270: 272-281. |
19 | SÁNCHEZ-PRIETO J , SORIA-VERDUGO A , GÓMEZ-HERNÁNDEZ J , et al . Stagnant regions estimation in fluidized beds from bed surface observation[J]. Chem. Eng. J., 2015, 281: 109-118. |
20 | GUO Q J , WERTHER J , AUE-KLETT C , et al . Flow maldistribution at bubble cap distributor in a plant-scale circulating fluidized bed riser[J]. AIChE J., 2005, 51: 1359-1366. |
21 | SIEGEL R . Effect of distributor plate-to-bed resistance ratio on onset of fluidized-bed channeling[J]. AIChE J., 1976, 22: 590-592. |
22 | ELNASHAIE S S E H , GRACE J R . Complexity, bifurcation and chaos in natural and man-made lumped and distributed systems[J]. Chem. Eng. Sci., 2007, 62(13): 3295-3325. |
23 | GRACE J R , CUI H , ELNASHAIE S S E H . Non-uniform distribution of two-phase flows through parallel identical paths[J]. Can.J. Chem. Eng., 2007, 85: 662-668. |
24 | MASNADI M S , GRACE J R , BI X , et al . Distribution of multi-phase gas-solid flow across identical parallel cyclones[J]. Sep. Purif. Technol., 2010, 72: 48-55. |
25 | MASNADI M S , ELYASI S , GRACE J R , et al . Gas-solid flow distribution through identical vertical passages: modeling and stability analysis[J]. AIChE J., 2010, 56: 2039 -2051. |
26 | DING Y L , ANDERSON R , ZHANG L F , et al . Simulations of two-phase flow distribution in communicating parallel channels for a PEM fuel cell[J]. Int. J. Multiphase Flow, 2013, 52: 35-45. |
27 | ZHANG C X , QIAN W Z , WEI F . Direct Lyapunov method to analysis mal-distribution of gas solids flow through parallines[C]// The 8th Sino-US Joint Conference of Chemical Engineering, Shanghai, China, 2015. |
28 | ZHANG C X , WANG Q Z , JIA Z , et al . Design of parallel cyclones based on stability analysis[J]. AIChE J. 2016, 62: 4251-4258. |
29 | GELDART D . Expansion of gas fluidized beds[J]. Int. Eng. Chem. Res., 2004, 43: 5802-5809. |
30 | RICHARDSON J F , ZAKI W N . Sedimentation and fluidization[J]. Trans. Inst. Chem. Eng., 1954, 32: 35-45. |
31 | FINNEMORE E J , FRANZINI J B . Fluid mechanics with engineering applications[M]. Boston: McGraw-Hill Companies Inc., 2002. |
32 | GLANSDORFF P , PRIGOGINE I . Thermodynamic theory of structure, stability and fluctuations[M]. London: Wiley, 1971. |
33 | PRIGOGINE I . Introduction to thermodynamics of irreversible processes[M]. 3rd ed. New York: Interscience, a Division of John Wiley & Sons, 1967. |
34 | ZHANG C X , QIAN W Z , WEI F . Instability analysis of uniform fluidization[J]. Chem. Eng. Sci., 2017, 173: 187-195. |
35 | THOMAS G B , WEIR M D , HASS J R . Thomas' calculus[M]. Boston: Addison-Wesley, 2003. |
36 | MERKIN D R . Introduction to the theory of stability[M]. New York: Springer, 1997: 25-75. |
37 | KARIMIPOUR S , PUGSLEY T . Study of gas streaming in a deep fluidized bed containing Geldart’s Group A particles[J]. Chem. Eng. Sci., 2010, 65: 3508-3517. |
38 | SATHIYAMOORTHY D , HORIO M . On the influence of aspect ratio and distributor in gas fluidized beds[J]. Chem. Eng. J., 2003, 93: 151-161. |
39 | SIERRA C , BONNIOL F , OCCELLI R , et al . Practical scaling considerations for dense gas fluidized beds interacting with the air-supply system[J]. Chem. Eng. Sci., 2009, 64: 3717-3720. |
40 | BONNIOL F , SIERRA C , OCCELLI R , et al . Similarity in dense gas-solid fluidized bed, influence of the distributor and the air-plenum[J]. Powder. Tech., 2009, 189: 14-24. |
41 | RAMIREZ E , FINNEY C E A , PANNALA S , et al . Computatinal study of the bubbling-to-slugging transition in a laboratory-scale fluidized bed[J]. Chem. Eng. J., 2017, 308: 544-556. |
42 | WANG JW , VAN DER HOEF M A , KUIPERS J A M . Coexistence of solidlike and fluidlike states in a deep gas-fluidized bed[J]. Ind. Eng. Chem. Res., 2010, 49: 5279-5287. |
43 | WELLS J . Streaming flow in large scale fluidization[C]//AIChE Annual Meeting Particle Technology Forum, Reno, USA, 2001. |
44 | KARIMIPOUR S , PUGSLEY T . Experimental study of the nature of gas streaming in deep fluidized beds of Geldart A particles[J]. Chem.Eng.J. 2010, 162: 388-395. |
45 | GAO Y J , MUZZIO F J , IERAPETRITOU M G . A review of the residence time distribution (RTD) application in solid unit operations[J]. Powder Tech. 2012, 228: 416-423. |
46 | LEE G S , KIM D S . Gas mixing in slugging and turbulent fluidized beds[J]. Chem. Eng. Comm., 1989, 86: 91. |
47 | DU B , FAN LS , WEI F , et al . Gas and solids mixing in a turbulent fluidized bed[J]. AIChE J., 2002, 48: 1896-1909. |
48 | LIU Y J , LAN X Y , XU C M , et al . CFD simulation of gas and solids mixing in FCC strippers[J]. AIChE J. 2012; 58: 1119-1132. |
49 | LI T W , ZHANG Y M , GRACE J R , et al . Numerical investigation of gas mixing in gas-solid fluidized beds[J]. AIChE J. 2010, 56:2280-2296. |
50 | FAN L T , HO T C , HIRAOKA S , et al . Pressure fluctuations in a fluidized bed[J]. AIChE J., 1981, 27: 388-396. |
51 | ZHAO G B , YANG Y R . Multiscale resolution of fluidized bed pressure fluctuation[J]. AIChE J., 2003, 49: 869-882. |
52 | BI H T . A critical review of the complex pressure fluctuation phenomenon in gas-solids fluidized beds[J]. Chem. Eng. Sci., 2007, 62: 3473-3493. |
53 | LUNGU M , WANG H T , WANG J D , et al . Two-fluid model simulations of the national energy technology laboratory bubbling fluidized bed challenge problem[J]. Ind. Eng. Chem. Res., 2016, 55: 5063-5077. |
54 | ZHANG C X , LI P L , LEI C , et al . Experimental study of non-uniform bubble growth in deep fluidized beds[J]. Chem. Eng. Sci., 2017. . |
55 | JIA Z , ZHANG C X , QIAN W Z , et al . Research and simulation of fast, strong exothermic reaction in gas-solid fluidized bed about temperature distribution[C]// Fluidization XV, Quebec, Canada, 2016. |
56 | ZHANG C X , QIAN W Z , WEI F . Non-uniform gas solids distribution and its effect on performance of fluidized bed reactors[C]// The 253th ACS national Meeting, San Francisco, USA, 2017. |
57 | LI J , KUIPERS J A M . On the origin of heterogeneous structure in dense gas-solid flows[J]. Chem. Eng. Sci., 2015, 60: 1251-1265. |
58 | ZHANG C X , QIAN W Z , WEI F . Phase separation of gas solids fluidization[C]// The 7th Asian Particle Technology, TaiBei, China, 2017. |
59 | PAIK K . Search for the optimality signature of river network development[J]. Phys. Rev. E, 2012, 86: 046110. |
60 | MURAMATSU M , IRIE T . Jamming transition in pedestrian conter flow[J]. Physica. A, 1999, 267: 487-498. |
61 | HELBING D . Traffic and related self-driven many-particle systems[J]. Rev. Mod. Phy., 2001, 73: 1067-1141. |
62 | HELBING D , FARKAS I J , VICSEK T . Simulating dynamical features of escape panic[J]. Nature, 2000, 407: 487-490. |
63 | HELBING D , FARKAS I J , VICSEK T . Freezing by heating in a driven mesoscopic system[J]. Phys. Rev. Lett., 2000, 84(6): 1240-1243. |
[1] | LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549. |
[2] | LI Chunli, HAN Xiaoguang, LIU Jiapeng, WANG Yatao, WANG Chenxi, WANG Honghai, PENG Sheng. Research progress of liquid distributors in packed columns [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4479-4495. |
[3] | ZHANG Kai, JIN Hanyu, LIU Siyu, WANG Shuai. Simulation of mass transfer process under the bubble interaction in bubbling fluidization [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2828-2835. |
[4] | JIN Yong, CHENG Yi, BAI Dingrong, ZHANG Chenxi, WEI Fei. Fluidization research and development in China [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2761-2780. |
[5] | YUAN Shouzheng, CHEN Xiao, JIANG Ming, YU Yaxiong, ZHOU Qiang. The influence of the wall on the mesoscale drag force in a gas-solid downer [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2272-2281. |
[6] | YIN Shaowu, ZHANG Chao, KANG Peng, HAN Jiawei, WANG Li. Numerical simulation of gas solid reaction process in silicon powder nitriding conveying bed [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2256-2267. |
[7] | JIANG Xuguang, WEI Bangji, HU Linfei, WANG Rupei, SONG Feifei, CHEN Shaoqing. Research status of external heat exchanger for circulating fluidized bed boiler and its application and development in garbage furnace [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1643-1652. |
[8] | Fei LI, Haijie CHEN, Zongkang SUN, Xiaobing GU, Yuyong BAI, Fei GAO, Linjun YANG. Numerical evaporation characteristics of desulfurization wastewater by rotating spray with different hot air distributor structure [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 385-392. |
[9] | Qingsheng HE, Jingfu FAN, Jiancheng ZHANG. Structural optimization of gas distributor in loop bio reactor [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 64-68. |
[10] | Wei PENG, Yansheng LIU, Shengxian HAN, Bingqing HUANG. Analysis of the factors affecting the conveyance of catalyst in the regenerated standpipe of FCCU [J]. Chemical Industry and Engineering Progress, 2020, 39(8): 2947-2953. |
[11] | TU Gongyi, ZONG Hongyuan, ZHONG Siqing, XU Jun, ZHOU Jing, XIN Zhong. Experimental study on flow characteristics of gas-solid of powdered coal in a fluidized-bed [J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 180-186. |
[12] | WANG Ling, ZHENG Yanping, CHEN Rong, YANG Asan, SUN Qin, ZHANG Xuli. Experimental study on the fluidized calcinations of FeCl2·4H2O crystals [J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3189-3194. |
[13] | TANG Jianfeng, CUI Jian, XIU Yunfei, YANG Wengang, JIN Xinming, ZHANG Weiming. Research on orifices diameter of calandria liquid distributor used in offshore deacidification tower with different spray densities [J]. Chemical Industry and Engineering Progress, 2017, 36(04): 1192-1201. |
[14] | LI Xubin, LIU Hui'e, CHEN Shuang, WANG Yubin, MU Guoqing, LIU Jinling. Fluidization behavior of industrial waste salt [J]. Chemical Industry and Engineering Progree, 2017, 36(01): 81-90. |
[15] | TIAN Bo, HUANG Guoqiang. Research progress on preparation of granular polysilicon by fluidized-bed silane pyrolysis [J]. Chemical Industry and Engineering Progree, 2016, 35(11): 3392-3399. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |