Chemical Industry and Engineering Progress ›› 2018, Vol. 37 ›› Issue (07): 2664-2671.DOI: 10.16085/j.issn.1000-6613.2017-1556
Previous Articles Next Articles
HE Yin1,2,3, ZHOU Yiying1, LIU Hao1,3, SUN Keke4, LI Xiaojiu1,2, WANG Xiaoyun1,2
Received:
2017-07-26
Revised:
2018-01-15
Online:
2018-07-05
Published:
2018-07-05
何崟1,2,3, 周艺颖1, 刘皓1,3, 孙可可4, 李晓久1,2, 王晓云1,2
通讯作者:
刘皓,副教授,博士,研究方向为智能纺织品和纳米材料。
作者简介:
何崟(1985-),女,讲师,博士研究生,研究方向为智能纺织品和柔性传感器。E-mail:heyin@tjpu.edu.cn
基金资助:
CLC Number:
HE Yin, ZHOU Yiying, LIU Hao, SUN Keke, LI Xiaojiu, WANG Xiaoyun. Research progress of flexible pressure sensors based on carbon materials[J]. Chemical Industry and Engineering Progress, 2018, 37(07): 2664-2671.
何崟, 周艺颖, 刘皓, 孙可可, 李晓久, 王晓云. 基于碳材料的柔性压力传感器研究进展[J]. 化工进展, 2018, 37(07): 2664-2671.
[1] NAM S H, JEON P J, MIN S W, et al. Highly sensitive non-classical strain gauge using organic heptazole thin-film transistor circuit on a flexible substrate[J]. Advanced Functional Materials, 2014, 24(28):4413-4419. [2] HAMMOCK M L, CHORTOS A, TEE C K, et al. 25th anniversary article:the evolution of electronic skin(E-skin):a brief history, design considerations, and recent progress[J]. Advanced Materials, 2013, 25(42):5997-6038. [3] HU Y, XU C, ZHANG Y, et al. A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor[J]. Advanced Materials, 2011, 23(35):4068-4071. [4] KURIBARA K, WANG H, UCHIYAMA N, et al. Organic transistors with high thermal stability for medical applications[J]. Nature Communications, 2012, 3(2):723-7. [5] MANNSFELD S C, TEE B C, STOLTENBERG R M, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature Materials, 2010, 9(10):859-864. [6] XU S, ZHANG Y, JIA L, et al. Soft microfluidic assemblies of sensors, circuits, and radios for the skin[J]. Science, 2014, 344(6179):70-74. [7] YAMADA T, HAYAMIZU Y, YAMAMOTO Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection[J]. Nature Nanotechnology, 2011, 6(5):296-301. [8] PANG C, LEE G Y, KIM T I, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres[J]. Nature Materials, 2012, 11(9):795-801. [9] WANG X, GU Y, XIONG Z, et al. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals[J]. Advanced Materials, 2014, 26(9):1336-1342. [10] YU X G, LI Y Q, ZHU W B, et al. A wearable strain sensor based on a carbonized nano-sponge/silicone composite for human motion detection[J]. Nanoscale, 2017, 9(20):6680-6685. [11] ZHANG F, ZANG Y, HUANG D, et al. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructureframe-supported organic thermoelectric materials[J]. Nature Communications, 2015, 6:8356. [12] JIANG F K, TAI Y C, WALSH K, et al. Microfabricated pressure and shear stress sensors[C]//Proc. IEEE Tenth Annu. Int. Workshop on Micro. Electro. Mech. Syst., Nagoya, Japan, 1997:465-470. [13] WANG L, DING T, WANG P. Thin flexible pressure sensor array based on carbon black/silicone rubber nanocomposite[J]. IEEE Sensors Journal, 2009, 9(9):1130-1135. [14] YANG B, ZENG W, PENG Z, et al. A fully verified theoretical analysis of contact-mode triboelectric nanogenerators as a wearable power source[J]. Advanced Energy Materials, 2016, 6(16):1600505. [15] LEE K Y, YOON H, JIANG T, et al. Fully packaged self-powered triboelectric pressure sensor using hemispheres-array[J]. Advanced Energy Materials, 2016, 6(11):1502566. [16] LIU Y, HU Y, ZHAO J, et al. Self-powered piezoionic strain sensor toward the monitoring of human activities[J]. Small, 2016, 12(36):5074-5080. [17] KOEPPE R, BARTU P, BAUER S, et al. Light-and touch-point localization using flexible large area organic photodiodes and elastomer waveguides[J]. Advanced Materials, 2010, 21(34):3510-3514. [18] MURO-DE-LA-HERRAN A, GARCIA-ZAPIRAIN B, MENDEZZORRILLA A. Gait analysis methods:an overview of wearable and non-wearable systems, highlighting clinical applications[J]. Sensors, 2014, 14(2):3362-3394. [19] QIAN X, SU M, LI F, et al. Research progress in flexible wearable electronic sensors[J]. Acta Chimica Sinica, 2016, 74(7):565-575. [20] eTouch. Technology[EB/OL].[2017-7-10]. http://www.etouchcn.com/technology.htm. [21] FRUTIGER A, MUTH J T, VOGT D M, et al. Capacitive soft strain sensors via multicore-shell fiber printing[J]. Advanced Materials, 2015, 27(15):2440-2446. [22] HOWELL A M, KOBAYASHI T, HAYES H A, et al. Kinetic gait analysis using a low-cost insole[J]. IEEE Transactions on Biomedical Engineering, 2013, 60(12):3284-3290. [23] FAN F R, LIN L, ZHU G, et al. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J]. Nano Letters, 2012, 12(6):3109-3114. [24] TIAN H, SHU Y, WANG X F, et al. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range[J]. Scientific Reports, 2015, 5:8603. [25] DOLLEMAN R J, DAVIDOVIKJ D, CARTAMIL-BUENO S J, et al. Graphene squeeze-film pressure sensors[J]. Nano Letters, 2015, 16(1):568-571. [26] LIPOMI D J, VOSGUERITCHIAN M, TEE C K, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes[J]. Nature Nanotechnology, 2011, 6(12):788-792. [27] LI R Z, HU A, ZHANG T, et al. Direct writing on paper of foldable capacitive touch pads with silver nanowire inks[J]. ACS Applied Materials & Interfaces, 2014, 6(23):21721-21729. [28] LEE J S, SHIN K Y, CHEONG O J, et al. Highly sensitive and multifunctional tactile sensor using free-standing ZnO/PVDF thin film with graphene electrodes for pressure and temperature monitoring[J]. Scientific Reports, 2015, 5:7887. [29] DAGDEVIREN C, SU Y, JOE P, et al. Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring[J]. Nature Communications, 2014, 5(7697):4496-10. [30] YAO H B, GE J, WANG C F, et al. A flexible and highly pressure-sensitive graphene-polyurethane sponge based on fractured microstructure design[J]. Advanced Materials, 2013, 25(46):6692-6698. [31] WANG Z, YE X. A numerical investigation on piezoresistive behaviour of carbon nanotube/polymer composites:mechanism and optimizing principle[J]. Nanotechnology, 2013, 24(26):265704. [32] AMJADI M,PICHITPAJONGKIT A,LEE S,et al. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite[J]. ACS Nano, 2014, 8(5):5154-5163. [33] GONG S, SCHWALB W, WANG Y, et al. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires[J]. Nature Communications, 2014, 5(2):3132-3138. [34] PAN L, CHORTOS A, YU G, et al. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film[J]. Nature Communications, 2014, 5(1):3002-3008. [35] KALTENBRUNNER M, SEKITANI T, REEDER J, et al. An ultra-lightweight design for imperceptible plastic electronics[J]. Nature, 2013, 499(7459):458-463. [36] WAGNER S, BAUER S. Materials for stretchable electronics[J]. Mrs Bulletin, 2012, 37(37):207-217. [37] SEKITANI T, NOGUCHI Y, HATA K, et al. A rubberlike stretchable active matrix using elastic conductors[J].Science, 2008, 321(5895):1468-1472. [38] CHUN S, KIM Y, JIN H, et al. A graphene force sensor with pressure-amplifying structure[J]. Carbon, 2014, 78(11):601-608. [39] YI W, WANG Y, WANG G, et al. Investigation of carbon black/silicone elastomer/dimethylsilicone oil composites for flexible strain sensors[J]. Polymer Testing, 2012, 31(5):677-684. [40] HE Y, LI W, YANG G L, et al. A novel method for fabricating wearable, piezoresistive, and pressure sensors based on modified-graphite/polyurethane composite films[J]. Materials, 2017, 10(7). DOI:10.3390/ma10070684. [41] HUANG Y, WANG W, SUN Z, et al. A multilayered flexible piezoresistive sensor for wide-ranged pressure measurement based on CNTs/CB/SR composite[J]. Journal of Materials Research, 2015, 30(12):1869-1875. [42] HU C H, LIU C H, CHEN L Z, et al. Semiconductor behaviors of low loading multiwall carbon nanotube/poly (dimethylsiloxane) composites[J]. Applied Physics Letters, 2009, 95(10):103103. [43] HAN J W, KIM B S, LI J, et al. Flexible, compressible, hydrophobic, floatable, and conductive carbon nanotube-polymer sponge[J]. Applied Physics Letters, 2013, 102(5):051903. [44] JUNG S, KIM J H, KIM J, et al. Reverse-micelle-induced porous pressure-sensitive rubber for wearable human-machine interfaces[J]. Advanced Materials, 2014, 26(28):4825-4830. [45] ZHU B, NIU Z, WANG H, et al. Artificial skin:microstructured graphene arrays for highly sensitive flexible tactile sensors[J]. Small, 2014, 10(18):3625-3631. [46] REINA A, JIA X, HO J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters, 2009, 9(1):30-35. [47] LI X, CAI W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932):1312-1314. [48] KIM S H, SONG W, JUNG M W, et al. Carbon nanotube and graphene hybrid thin film for transparent electrodes and field effect transistors[J]. Advanced Materials, 2014, 26(25):4247-4752. [49] PANG S, HERNANDEZ Y, FENG X, et al. Graphene as transparent electrode material for organic electronics[J]. Advanced Materials, 2011, 23(25):2779-2795. [50] ZANG Y, ZHANG F, DI C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons, 2015, 2(2):25-59. [51] ZHU S E, KRISHNA GHATKESAR M, ZHANG C, et al. Graphene based piezoresistive pressure sensor[J]. Applied Physics Letters, 2013, 102(16):161904. [52] CUI J, ZHANG B, DUAN J, et al. Flexible pressure sensor with Ag wrinkled electrodes based on PDMS substrate[J]. Sensors, 2016, 16(12):2131. [53] KWON D, LEE T I, SHIM J, et al. Highly sensitive, flexible and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer[J]. ACS Applied Materials & Interfaces, 2016, 8(26):16922-16931. [54] LUO N, DAI W, LI C, et al. Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement[J]. Advanced Functional Materials, 2016, 26(8):1178-1187. [55] TAI Y, MULLE M, AGUILAR V I, et al. A highly sensitive, low-cost, wearable pressure sensor based on conductive hydrogel spheres[J]. Nanoscale, 2015, 7(35):14766-14773. [56] GAMA A L, LIMA W B D, SANTISTEBAN J A, et al. Proposal of new strain transducers based on piezoelectric sensors[J]. IEEE Sensors Journal, 2015, 15(11):6263-6270. [57] ZHANG S, ZHANG H, YAO G, et al. Highly stretchable, sensitive, and flexible strain sensors based on silver nanoparticles/carbon nanotubes composites[J]. Journal of Alloys & Compounds, 2015, 652:48-54. [58] BINGGER P, ZENS M, WOIAS P. Highly flexible capacitive strain gauge for continuous long-term blood pressure monitoring[J]. Biomedical Microdevices, 2012, 14(3):573-581. [59] RODGERS M M, PAI V M, CONROY R S. Recent advances in wearable sensors for health monitoring[J]. IEEE Sensors Journal, 2015, 15(6):3119-3126. [60] LI M, LI H, ZHONG W, et al. Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection[J]. ACS Applied Materials & Interfaces, 2014, 6(2):1313-1319. [61] WANG Y, WANG L, YANG T, et al. Wearable and highly sensitive graphene strain sensors for human motion monitoring[J]. Advanced Functional Materials, 2014, 24(29):4666-4670. [62] MICHELIS F, BODELOT L, BONNASSIEUX Y, et al. Highly reproducible, hysteresis-free, flexible strain sensors by inkjet printing of carbon nanotubes[J]. Carbon, 2015, 95:1020-1026. [63] KANAO K, HARADA S, YAMAMOTO Y, et al. Printable flexible tactile pressure and temperature sensors with high selectivity against bending[C]//IEEE International Conference on MICRO Electro Mechanical Systems. IEEE, 2015:756-759. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[4] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[5] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[6] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[7] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[8] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[9] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
[10] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[11] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[12] | LIU Nian, CHEN Kui, WU Bin, JI Lijun, WU Yanyang, HAN Jinling. Preparation of yolk-shell mesoporous magnetic carbon microspheres and its efficient adsorption of erythromycin [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2724-2732. |
[13] | ZHANG Ning, WU Haibin, LI Yu, LI Jianfeng, CHENG Fangqin. Recent advances in preparation and application of floating photocatalysts in water treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2475-2485. |
[14] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[15] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1931
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 911
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |