Chemical Industry and Engineering Progress ›› 2017, Vol. 36 ›› Issue (12): 4445-4452.DOI: 10.16085/j.issn.1000-6613.2017-0520
Previous Articles Next Articles
JI Yajun, LIU Yunpeng, YANG Honghui, YAN Wei, LIU Zhaohui
Received:
2017-03-28
Revised:
2017-07-26
Online:
2017-12-05
Published:
2017-12-05
姬亚军, 刘云鹏, 杨鸿辉, 延卫, 刘朝晖
通讯作者:
杨鸿辉,副教授,博士生导师,主要从事环境催化材料的研究。
作者简介:
姬亚军(1990-),男,博士研究生,主要从事分子筛的改性及催化裂解碳氢燃料的研究。E-mail:jiyajun928@stu.xjtu.edu.cn。
基金资助:
CLC Number:
JI Yajun, LIU Yunpeng, YANG Honghui, YAN Wei, LIU Zhaohui. Research progress of ZSM-5 zeolite for hydrocarbon fuel catalytic cracking against carbon deposition[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4445-4452.
姬亚军, 刘云鹏, 杨鸿辉, 延卫, 刘朝晖. ZSM-5分子筛碳氢燃料裂解催化剂抗积炭的研究进展[J]. 化工进展, 2017, 36(12): 4445-4452.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017-0520
[1] MALOLA S,SVELLE S,BLEKEN F L,et al. Detailed reaction paths for zeolite dealumination and desilication from density functional calculations[J]. Angewandte Chemie International Edition,2012,51:652-655. [2] ARAMBURO L R,SMIT E D,ARSTAD B,et al. X-ray imaging of zeolite particles at the nanoscale:influence of steaming on the state of aluminum and the methanol-to-olefin reaction[J]. Angewandte Chemie International Edition,2012,51:3616-3619. [3] JAVAID R,URATA K,FURUKAWA S,et al. Factors affecting coke formation on H-ZSM-5 in naphtha cracking[J]. Applied Catalysis A:General,2015,491:100-105. [4] JI Y J,YANG H H,ZHANG Q,et al. Phosphorus modification increases catalytic activity and stability of ZSM-5 zeolite on supercritical catalytic cracking of n-dodecane[J]. Journal of Solid State Chemistry,2017,251:7-13. [5] JI Y J,SHI B F,YANG H H,et al. Synthesis of isomorphous MFI nanosheet zeolites for supercritical catalytic cracking of n-dodecane[J]. Applied Catalysis A:General,2017,533:90-98. [6] FURUMOTO Y,HARADA Y,TSUNOJI N,et al. Effect of acidity of ZSM-5 zeolite on conversion of ethanol to propylene[J]. Applied Catalysis A:General,2011,399(1/2):262-267. [7] MINTOVA S,JABER M,VALTCHEV V. Nanosized microporous crystals:emerging applications[J]. Chem. Soc. Rev.,2015,44(20):7207-7233. [8] NAKASAKA Y,NISHIMURA J I,TAGO T,et al. Deactivation mechanism of MFI-type zeolites by coke formation during n-hexane cracking[J]. Chemical Engineering Journal,2015,278:159-165. [9] HARTMANN M. Hierarchical zeolites:a proven strategy to combine shape selectivity with efficient mass transport[J]. Angewandte Chemie International Edition,2004,43:5880-5882. [10] 崔生航,张君涛,申志兵. 多级孔道ZSM-5分子筛的合成及其催化应用[J]. 化工进展,2015,34(9):3311-3336. CUI S H,ZHANG J T,SHEN Z B. Hierarchical ZSM-5 zeolite:synthesis and catalytic applications[J]. Chemical Industry and Engineering Progress,2015,34(9):3311-3336. [11] 严丽霞,虞贤波,王靖岱,等. 多级孔道沸石用于甲醇制丙烯反应研究进展[J]. 化工进展,2011,30(9):1873-1877. YAN L X,YU X B,WANG J D,et al. Research progress of hierarchical zeolites for methanol to propylene reaction[J]. Chemical Industry and Engineering Progress,2011,30(9):1873-1877. [12] 成尚元,刘有智,祁贵生. 超重力技术制备多级孔ZSM-5分子筛[J]. 化工进展,2017,36(2):588-594. CHENG S Y,LIU Y Z,QI G S. Synthesis of hierarchical ZSM-5 zeolite by high gravity technology[J]. Chemical Industry and Engineering Progress,2017,36(2):588-594. [13] YIN C,FENG L,NI R,et al. One-pot synthesis of hierarchically nanoporous ZSM-5 for catalytic cracking[J]. Powder Technology,2014,253:10-13. [14] KARLSSON A,STÖCKER M,SCHMIDT R. Composites of micro-and mesoporous materials:simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach[J]. Microporous and Mesoporous Materials,1999,27:181-192. [15] EMDADI L,OH S C,WU Y,et al. The role of external acidity of meso-/microporous zeolites in determining selectivity for acid-catalyzed reactions of benzyl alcohol[J]. Journal of Catalysis,2016,335:165-174. [16] ZHOU J,HUA Z,LIU Z,et al. Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties[J]. ACS Catalysis,2011,1(4):287-291. [17] JACOBSEN C J H,MADSEN C,HOUZVICKA J,et al. Mesoporous zeolite single crystals[J]. Journal of the American Chemical Society,2000,122:7116-7117. [18] CHAL R,RARDIN C G,BULUT M,et al. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores[J]. Chemical Catalyst and Chemistry,2011,3:67-81. [19] WANG J,YUE W,ZHOU W,et al. TUD-C:a tunable,hierarchically structured mesoporous zeolite composite[J]. Microporous and Mesoporous Materials,2009,120(1/2):19-28. [20] WANG J,GROEN J C,YUE W B,et al. Single-template synthesis of zeolite ZSM-5 composites with tunable mesoporosity[J]. Chemical Communications,2007,44:4653-4655. [21] NANDAN D,SAXENA S K,VISWANADHAM N. Synthesis of hierarchical ZSM-5 using glucose as a templating precursor[J]. Journal of Materials Chemistry A,2013,2(4):1054-1059. [22] LI J,LI X,ZHOU G,et al. Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions[J]. Applied Catalysis A:General,2014,470:115-122. [23] BLEKEN F L,BARBERA K,BONINO F,et al. Catalyst deactivation by coke formation in microporous and desilicated zeolite H-ZSM-5 during the conversion of methanol to hydrocarbons[J]. Journal of Catalysis,2013,307:62-73. [24] GROEN J C,MOULIJN J A,PEREZ-RAMIREZ J. Desilication:on the controlled generation of mesoporosity in MFI zeolites[J]. Journal of Materials Chemistry,2006,16(22):2121-2131. [25] ABELLÓ S,BONILLA A,PÉREZ-RAMÍREZ J. Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching[J]. Applied Catalysis A:General,2009,364(1/2):191-198. [26] PÉREZ-RAMIREZ J,CHRISTENSEN C H,EGEBLAD K,et al. Hierarchical zeolites:enhanced utilisation of microporous crystals in catalysis by advances in materials design[J]. Chemical Society Reviews,2008,37(11):2530-2542. [27] QIN Z,LAKISS L,GILSON J P,et al. Chemical equilibrium controlled etching of MFI-type zeolite and its influence on zeolite structure,acidity,and catalytic activity[J]. Chemistry of Materials,2013,25(14):2759-2766. [28] FODOR D,KRUMEICH F,HAUERT R,et al. Differences between individual ZSM-5 crystals in forming hollow single crystals and mesopores during base leaching[J]. Chemistry,2015,21(16):6272-6277. [29] DAI C,ZHANG A,LIU M,et al. Hollow ZSM-5 with silicon-rich surface,double shells,and functionalized interior with metallic nanoparticles and carbon nanotubes[J]. Advanced Functional Materials,2015,25(48):7479-7487. [30] DIAO Z,WANG L,ZHANG X,et al. Catalytic cracking of supercritical n-dodecane over meso-HZSM-5@Al-MCM-41 zeolites[J]. Chemical Engineering Science,2015,135:452-460. [31] VU X H,NGUYEN S,DANG T T,et al. Catalytic cracking of triglyceride-rich biomass toward lower olefins over a nano-ZSM-5/SBA-15 analog composite[J]. Catalysts,2015,5(4):1692-1703. [32] INAGAKI S,SHINODA S,KANEKO Y,et al. Facile fabrication of ZSM?5 zeolite catalyst with high durability to coke formation during catalytic cracking of paraffins[J]. ACS Catalysis,2012,3:74-78. [33] MOCHIZUKI H,YOKOI T,IMAI H,et al. Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking[J]. Applied Catalysis A:General,2012,449:188-197. [34] 刘芝平,张嫱嫱,赵贺,等. C7碳氢化合物在纳米级介孔ZSM-5沸石中的扩散性能[J]. 化工进展,2014,33(10):2711-2721. LIU Z P,ZHANG Q Q,ZHAO H,et al. Diffusion of C7 hydrocarbons in nanoporous ZSM-5 materials[J]. Chemical Industry and Engineering Progress,2014,33(10):2711-2721. [35] 姜健准,张明森,柯丽,等. 超细ZSM-5分子筛的制备及其形貌表征[J]. 化工进展,2012,31(9):1980-1984. JIANG J Z,ZHANG M S,KE L,et al. Synthesis and characterization of ultra-fine ZSM-5 zeolite[J]. Chemical Industry and Engineering Progress,2012,31(9):1980-1984. [36] MINTOVA S,GILSON J P,VALTCHEV V. Advances in nanosized zeolites[J]. Nanoscale,2013,5(15):6693-6703. [37] MOCHIZUKI H,YOKOI T,IMAI H,et al. Facile control of crystallite size of ZSM-5 catalyst for cracking of hexane[J]. Microporous and Mesoporous Materials,2011,145(1/2/3):165-171. [38] URATA K,FURUKAWA S,KOMATSU T. Location of coke on H-ZSM-5 zeolite formed in the cracking of n-hexane[J]. Applied Catalysis A:General,2014,475:335-340. [39] XUE H,HUANG X,DITZEL E,et al. Coking on micrometer-and nanometer-sized mordenite during dimethyl ether carbonylation to methyl acetate[J]. Chinese Journal of Catalysis,2013,34(8):1496-1503. [40] LAKISS L,NGOYE F,CANAFF C,et al. On the remarkable resistance to coke formation of nanometer-sized and hierarchical MFI zeolites during ethanol to hydrocarbons transformation[J]. Journal of Catalysis,2015,328:165-172. [41] ROSILDA S,CHIANG A S T. Some observations on the synthesis of fully-dispersible nanocrystalline zeolite ZSM-5[J]. Journal of Nanoscience and Nanotechnology,2014,14(9):7351-7359. [42] SHI L,WANG J,LI N,et al. Direct synthesis of monolithic nano-sized ZSM-5 aggregates possessing ordered mesoporosity by controlling arrangement of nanoparticles[J]. Journal of Alloys and Compounds,2017,695:2488-2498. [43] INAGAKI S,SHINODA S,HAYASHI S,et al. Improvement in the catalytic properties of ZSM-5 zeolite nanoparticles via mechanochemical and chemical modifications[J]. Catalysis Science & Technology,2016,6(8):2598-2604. [44] WAKIHARA T,SATO K,INAGAKI S,et al. Fabrication of fine zeolite with improved catalytic properties by bead milling and alkali treatment[J]. ACS Applied Materials & Interfaces,2010,2(10):2715-2718. [45] CHOI M,NA K,KIM J,et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature,2009,461(7261):246-249. [46] NA K,JO C,KIM J,et al. Directing zeolite structures into hierarchically nanoporous architectures[J]. Science,2011,333:328-332. [47] ZHU X,WU L,MAGUSIN P C M M,et al. On the synthesis of highly acidic nanolayered ZSM-5[J]. Journal of Catalysis,2015,327:10-21. [48] XU D,MA Y,JING Z,et al. π-π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets[J]. Nature Communication,2014,5:4262. [49] RANI P,SRIVASTAVA R,SATPATI B. One-step dual template mediated synthesis of nanocrystalline zeolites of different framework structures[J]. Crystal Growth & Design,2016,16(6):3323-3333. [50] ZHANG X,LIU D,XU D,et al. Synthesis of self-pillared zeolite nanosheets by repetitive branching[J]. Science,2012,336(6089):1684-1687. [51] XU D,SWINDLEHURST G R,WU H,et al. On the synthesis and adsorption properties of single-unit-cell hierarchical zeolites made by rotational Intergrowths[J]. Advanced Functional Materials,2014,24(2):201-208. [52] LIU B,ZHENG L,ZHU Z,et al. Effect of synthesis conditions on the structural and catalytic properties of hierarchically structured ZSM-5 zeolites[J]. RSC Advances,2014,4(27):13831. [53] BLASCO T,CORMA A,MARTINEZTRIGUERO J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition[J]. Journal of Catalysis,2006,237(2):267-277. [54] HODALA J L,HALGERI A B,SHANBHAG G V. Phosphate modified ZSM-5 for the shape-selective synthesis of para-diethylbenzene:role of crystal size and acidity[J]. Applied Catalysis A:General,2014,484:8-16. [55] LI J,LI T,MA H,et al. Effect of impregnating Fe into P-modified HZSM-5 in the coupling cracking of butene and pentene[J]. Industrial & Engineering Chemistry Research,2015,54(6):1796-1805. [56] DING J,WANG M,PENG L,et al. Combined desilication and phosphorus modification for high-silica ZSM-5 zeolite with related study of hydrocarbon cracking performance[J]. Applied Catalysis A:General,2015,503:147-155. [57] SONG Z,TAKAHASHI A,NAKAMURA I,et al. Phosphorus-modified ZSM-5 for conversion of ethanol to propylene[J]. Applied Catalysis A:General,2010,384(1/2):201-205. [58] ZHAO G,TENG J,XIE Z,et al. Effect of phosphorus on HZSM-5 catalyst for C4-olefin cracking reactions to produce propylene[J]. Journal of Catalysis,2007,248(1):29-37. [59] LEE J,HONG U G,HWANG S,et al. Catalytic cracking of C5 raffinate to light olefins over lanthanum-containing phosphorous-modified porous ZSM-5:effect of lanthanum content[J]. Fuel Processing Technology,2013,109:189-195. [60] KIM S,SASMAZ E,LAUTERBACH J. Effect of Pt and Gd on coke formation and regeneration during JP-8 cracking over ZSM-5 catalysts[J]. Applied Catalysis B:Environmental,2015,168/169:212-219. |
[1] | ZHENG Qian, GUAN Xiushuai, JIN Shanbiao, ZHANG Changming, ZHANG Xiaochao. Photothermal catalysis synthesis of DMC from CO2 and methanol over Ce0.25Zr0.75O2 solid solution [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 319-327. |
[2] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[3] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[4] | GENG Yuanze, ZHOU Junhu, ZHANG Tianyou, ZHU Xiaoyu, YANG Weijuan. Homogeneous/heterogeneous coupled combustion of heptane in a partially packed bed burner [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4514-4521. |
[5] | GAO Yanjing. Analysis of international research trend of single-atom catalysis technology [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4667-4676. |
[6] | LI Dongze, ZHANG Xiang, TIAN Jian, HU Pan, YAO Jie, ZHU Lin, BU Changsheng, WANG Xinye. Research progress of NO x reduction by carbonaceous substances for denitration in cement kiln [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4882-4893. |
[7] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[8] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[9] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[10] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[11] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[12] | YANG Jing, LI Bo, LI Wenjun, LIU Xiaona, TANG Liuyuan, LIU Yue, QIAN Tianwei. Degradation of naphthalene by degrading bacteria isolated from coking contaminated sites [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4351-4361. |
[13] | GUO Lixing, PANG Weiying, MA Keyao, YANG Jiahan, SUN Zehui, ZHANG Pan, FU Dong, ZHAO Kun. Hierarchically multilayered TiO2 with spatial pore-structure for efficient photocatalytic CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3643-3651. |
[14] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[15] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |