Chemical Industry and Engineering Progress ›› 2017, Vol. 36 ›› Issue (11): 4257-4264.DOI: 10.16085/j.issn.1000-6613.2016-2410
Previous Articles Next Articles
GU Yongzheng, WANG Shumin
Received:
2017-12-26
Revised:
2017-02-13
Online:
2017-11-05
Published:
2017-11-05
顾永正, 王树民
通讯作者:
顾永正(1991-),男,博士,博士后,研究方向为燃煤电站烟气污染物控制技术及应用。
作者简介:
顾永正(1991-),男,博士,博士后,研究方向为燃煤电站烟气污染物控制技术及应用。E-mail:20027557@shenhua.cc。
基金资助:
CLC Number:
GU Yongzheng, WANG Shumin. Research progress of mercury adsorption and oxidation mechanism on modified coal-fired fly ash[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4257-4264.
顾永正, 王树民. 改性燃煤飞灰吸附氧化脱汞机理研究进展[J]. 化工进展, 2017, 36(11): 4257-4264.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2016-2410
[1] 潘伟平,张永生,李文瀚,等.燃煤汞污染监测及控制技术[J].科技导报,2014,32:57-60. PAN W P,ZHANG Y S,LI W H,et al.Mercury monitoring and controlling technologies for coal power plants[J].Science & Technology Review,2014,32:57-60. [2] 谭增强,牛国平.烟气汞脱除的研究进展[J].热力发电,2013,42(10):1-8. TAN Z Q,NIU G P.Research progress of mercury removal in flue gas[J].Thermal Power Generation,2013,42(10):1-8. [3] 刘思妹,朱毅,郝睿.国内外汞污染现状及管理措施[J].环境科学与技术,2014,37(120):290-294. LIU S M,ZHU Y,HAO R.A review of mercury pollution and management in the domestic and overseas[J].Environmental Science & Technology,2014,37(120):290-294. [4] The State of U.S. Mercury control in response to MATS[EB/OL].[2016-12-26].http://www.powermag.com/the-state-of-us-mercury-control-in-response-to-mats/. [5] BLISSETT R S,ROWSON N A.A review of the multi-component utilisation of coal fly ash[J].Fuel,2012,97(7):1-23. [6] PRESTO A A,GRANITE E J.Survey of catalysts for oxidation of mercury in flue gas[J].Environmental Science & Technology,2006,40(18):5601-5609. [7] BALAJI K,HELBLE J J.Understanding mercury transformations in coal-fired power plants:evaluation of homogeneous Hg oxidation mechanisms[J].Environmental Science & Technology,2007,41(22):7870-7875. [8] NIKSA S,FUJIWARA N.Predicting extents of mercury oxidation in coal-derived flue gases[J].Journal of the Air & Waste Management Association,2005,55(7):930-939. [9] ZHOU J S,LUO Z Y,HU C X,et al.Factors impacting gaseous mercury speciation in postcombustion[J].Energy & Fuels,2006,21(21):491-495. [10] PAN H Y,MINET R G,BENSON S W,et al.Process for converting hydrogen chloride to chlorine[J].Indengchemres,1994,33(12):2996-3003. [11] GRANITE E J,PENNLINE H W,HARGIS R A.Novel sorbents for mercury removal from flue gas[J].Ind. Eng. Chem. Res.,2000,39(4):1020-1029. [12] HE S,ZHOU J S,ZHU Y Q,et al.Mercury oxidation over a vanadia-based selective catalytic reduction catalyst[J].Energy & Fuels,2009,23(1):253-259. [13] 孟素丽,段钰锋,黄治军,等.烟气成分对燃煤飞灰汞吸附的影响[J].中国电机工程学报,2009,29(20):66-73. MENG S L,DUAN Y F,HUANG Z J,et al.Effect of flue gas components on mercury adsorption by coal-fired fly ash[J].Proceedings of the CSEE,2009,29(20):66-73. [14] 匡俊艳,徐文青,朱廷钰,等.粉煤灰物化性质对单质汞吸附性能的影响[J].燃料化学学报,2012,40(6):763-768. KUANG J Y,XU W Q,ZHU T Y,et al.Effect of physicochemical properties of fly ash on mercury adsorption performance[J].Journal of Fuel Chemistry and Technology,2012,40(6):763-768. [15] 樊保国,贾里,李晓栋,等.电站燃煤锅炉飞灰特性对其吸附汞能力的影响[J].动力工程学报,2016,36(8):621-628. FAN B G,JIA L,LI X D,et al.Study on mercury adsorption by fly ash from coal-fired boilers of power plants[J].Journal of Chinese Society of Power Engineering,2016,36(8):621-628. [16] 江贻满,段钰锋,杨祥花,等.ESP飞灰对燃煤锅炉烟气汞的吸附特性[J].东南大学学报(自然科学版),2007,37(3):436-440. JIANG Y M,DUAN Y F,YANG X H,et al.Adsorption characterization of coal fired flue gas mercury by ESP fly ashs[J].Journal of Southeast University (Natural Science Edition),2007,37(3):436-440. [17] ZHONG L C,ZHANG Y S,LIU Z,et al.Study of mercury adsorption by selected Chinese coal fly ashes[J].Journal of Thermal Analysis & Calorimetry,2014,116(3):1197-1203. [18] 李猛,刘晶,郑楚光.未燃尽炭表面吸附汞的机理研究[J].工程热物理学报,2007(5):882-884. LI M,LIU J,ZHENG C G.Studies on mercury adsorption mechanism on unburned carbon surface[J].Journal of Engineering Thermophysics,2007(5):882-884. [19] ABAD-VALLE P,LOPEZ-ANTON M A,DIAZ-SOMOANO M,et al.The role of unburned carbon concentrates from fly ashes in the oxidation and retention of mercury[J].Chemical Engineering Journal,2011,174(1):86-92. [20] LI J R,MAROTO-VALER M M.Computational and experimental studies of mercury adsorption on unburned carbon present in fly ash[J].Carbon,2012,50(50):1913-1924. [21] HUGGINS F E,YAP N,HUFFMAN G P,et al.XAFS characterization of mercury captured from combustion gases on sorbents at low temperatures[J].Fuel Processing Technology,2003,82(2/3):167-196. [22] OLSON E S,MILLER S J,SHARMA R K,et al.Catalytic effects of carbon sorbents for mercury capture[J].Journal of Hazardous Materials,2000,74(1/2):61-79. [23] GOODARZI F,HOWER J C.Classification of carbon in Canadian fly ashes and their implications in the capture of mercury[J].Fuel,2008,87(10/11):1949-1957. [24] ZHAO Y C,ZHANG J Y,LIU J,et al.Experimental study on fly ash capture mercury in flue gas[J].Science China (Technological Sciences),2010,53(4):976-983. [25] 屈文麒,刘晶,袁锦洲,等.NO对未燃尽炭吸附汞影响的机理研究[J].工程热物理学报,2010,31(3):523-526. Qu W Q,LIU J,YUAN J Z,et al.Effect of nitric oxide on mercury adsorption capacity on unburned carbon[J].Journal of Engineering Thermophysics,2010,31(3):523-526. [26] LIU J,QU W Q,SANG W J,et al.Effect of SO2 on mercury binding on carbonaceous surfaces[J].Chemical Engineering Journal,2012,184(2):163-167. [27] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.用于水泥和混凝土中的粉煤灰:GBT1596-2005[S].北京:中国标准出版社,2005. General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,Standardization Administration of the People's Republic of China.Fly ash used for cement and concrete:GBT1596-2005[S].Beijing:Standards Press of China,2015. [28] DUNHAM G E,DEWALL R A,SENIOR C L.Fixed-bed studies of the interactions between mercury and coal combustion fly ash[J].Fuel Processing Technology,2003,82(2):197-213. [29] GHORISHI S B,LEE C W,JOZEWICZ W S,et al.Effects of fly ash transition metal content and flue gas HCl/SO2 ratio on mercury speciation in waste combustion[J].Environmental Engineering Science,2005,22(2):221-231. [30] ABAD-VALLE P,LOPEZ-ANTON M A,DIAZ-SOMOANO M,et al.Influence of iron species present in fly ashes on mercury retention and oxidation[J].Fuel,2011,90(8):2808-2811. [31] 张锦红.燃煤飞灰特性及其对烟气汞脱除作用的实验研究[D].上海:上海电力学院,2013. ZHANG J H.The experimental study of fly ash properties and its effect on flue gas mercury removal[D].Shanghai:Shanghai University of Electric Power,2013. [32] 张翼,杨建平,赵永椿,等.可循环磁珠脱除燃煤烟气中单质汞的性能与工艺路线研究[J].热力发电,2016,45(10):10-15. ZHANG Y,YANG J P,ZHAO Y C,et al.Mercury capture performance of recyclable magnetospheres catalyst for coal-fired flue gas and the process route study[J].Thermal Power Generation,2016,45(10):10-15. [33] YANG J P,ZHAO Y C,ZHANG J Y,et al.Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas[J].Environmental Science & Technology,2014,48(24):14837-14843. [34] YANG J P,ZHAO Y C,ZHANG J Y,et al.Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash.Part 1.Catalyst characterization and performance evaluation[J].Fuel,2015,164:419-428. [35] XU W Q,WANG H R,ZHU T Y,et al.Mercury removal from coal combustion flue gas by modified fly ash[J].Journal of Environmental Sciences,2013,25(2):393-398. [36] LIU M M,HOU L A,XI B D,et al.Synthesis,characterization,and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash[J].Applied Physics Letters,2013,273(100):706-716. [37] XING L L,XU Y L,ZHONG Q.Mn and Fe modified fly ash as a superior catalyst for elemental mercury capture under air conditions[J].Energy & Fuels,2012,26(8):4903-4909. [38] CAO Y,DUAN Y F,KELLIE S,et al.Impact of coal chlorine on mercury speciation and emission from a 100MW utility boiler with cold-side electrostatic precipitators and low-NOx burners[J].Energy & Fuels,2005,19(3):842-854. [39] CAO Y,GAO Z Y,ZHU J S,et al.Impacts of halogen additions on mercury oxidation,in a slipstream selective catalyst reduction (SCR),reactor when burning sub-bituminous coal[J]. Environmental Science & Technology,2008,42(1):256-261. [40] CAO Y,WANG Q H,CHEN C W,et al.Investigation of mercury transformation by HBr addition in a slipstream facility with real Flue gas atmospheres of bituminous coal and powder river basin coal[J].Energy & Fuels,2007,21(5):2719-2730. [41] CAO Y,WANG Q H,LI J,et al.Enhancement of mercury capture by the simultaneous addition of hydrogen bromide (HBr) and fly ashes in a slipstream facility[J]. Environmental Science & Technology,2009,43(8):2812-2817. [42] WANG S M,ZHANG Y S,GU Y Z,et al.Using modified fly ash for mercury emissions control for coal-fired power plant applications in China[J].Fuel,2016,181(1):1230-1237. [43] 段威.飞灰基吸附剂在携带床反应器上对汞的吸附性能研究[D].北京:华北电力大学,2014. DUAN W.Research of fly ash sorbents on the mercury absorption characteristics in entrained-flow reactor[D].Beijing:North China Electric Power University,2014. [44] GU Y Z,ZHANG Y S,LIN L R,et al.Evaluation of elemental mercury adsorption by fly ash modified with ammonium bromide[J].Journal of Thermal Analysis & Calorimetry,2015,119(3):1663-1672. [45] 李晖.燃煤飞灰的改性和吸附机理研究[D].合肥:中国科学技术大学,2015. LI H.Modification and adsorption mechanism of coal fly ash[D].Hefei:University of Science and Technology of China,2015. [46] HUTSON N D,ATTWOOD B C,SCHECKEL K G.XAS and XPS characterization of mercury binding on brominated activated carbon[J].Environmental Science & Technology,2007,41(5):1747-1752. [47] YANG Y J,LIU J,SHEN F H,et al.Kinetic study of heterogeneous mercury oxidation by HCl on fly ash surface in coal-fired flue gas[J].Combustion & Flame,2016,168:1-9. [48] LIU J,QU W Q,ZHENG C G.Theoretical studies of mercury-bromine species adsorption mechanism on carbonaceous surface[J].Proceedings of the Combustion Institute,2012,34(2):2811-2819. [49] LOPEZ-ANTON M A,PERRY R,ABAD-VALLE P,et al.Speciation of mercury in fly ashes by temperature programmed decomposition[J]. Fuel Processing Technology,2011,92(3):707-711. [50] LI W H,SONG N,ZHANG Y S,et al.Mercury sorption properties of HBr-modified fly ash in a fixed bed reactor[J].Journal of Thermal Analysis & Calorimetry,2015:1-7. [51] ZHANG Y S,ZHAO L L,GUO R T,et al.Mercury adsorption characteristics of HBr-modified fly ash in an entrained-flow reactor[J].Journal of Environmental Sciences,2015,33(7):156-162. [52] WILCOX J,ERDEM S,ABBY K,et al.Heterogeneous mercury reaction chemistry on activated carbon[J].Journal of the Air & Waste Management Association,2011,61(4):418-426. [53] NIKSA S,FUJIWARA N,FUJITA Y,et al.A mechanism for mercury oxidation in coal-derived exhausts[J].Journal of the Air & Waste Management Association,2002,52(8):894-901. [54] LI Y H,LEE C W,GULLETT B K.Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption[J].Fuel,2003,82(4):451-457. [55] TAN Z Q,SUN L S,XIANG J,et al.Gas-phase elemental mercury removal by novel carbon-based sorbents[J].Carbon,2012,50(2):362-371. [56] OLSON E S,AZENKENG A,LAUMB J D,et al.New developments in the theory and modeling of mercury oxidation and binding on activated carbons in flue gas[J].Fuel Processing Technology,2009,90(11):1360-1363. [57] DIAMANTOPOULOU I,SKODRAS G,SAKELLAROPOULOS G P.Sorption of mercury by activated carbon in the presence of flue gas components[J].Fuel Processing Technology,2010,91(2):158-163. [58] PRESTO A A,GRANITE E J.Noble metal catalysts for mercury oxidation in utility flue gas[J].Platinum Metals Review,2008,52(52):144-154. [59] GU Y Z,ZHANG Y S,LIN J W,et al.Homogeneous mercury oxidation with bromine species released from HBr-modified fly ash[J].Fuel,2016,169:58-67. [60] SONG N,TENG Y,WANG J W,et al.Effect of modified fly ash with hydrogen bromide on the adsorption efficiency of elemental mercury[J].Journal of Thermal Analysis & Calorimetry,2014,116(3):1189-1195. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | GAO Yufei, LU Jinfeng. Mechanism of heterogeneous catalytic ozone oxidation:A review [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 430-438. |
[3] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[4] | WANG Fu'an. Consumption and emission reduction of the reactor of 300kt/a propylene oxide process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 213-218. |
[5] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[6] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[7] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[8] | LEI Wei, JIANG Weijia, WANG Yugao, HE Minghao, SHEN Jun. Synthesis of N,S co-doped coal-based carbon quantum dots by electrochemical oxidation and its application in Fe3+ detection [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4799-4807. |
[9] | LYU Chengyuan, ZHANG Han, YANG Mingwang, DU Jianjun, FAN Jiangli. Recent advances of dioxetane-based afterglow system for bio-imaging [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4108-4122. |
[10] | LI Runlei, WANG Ziyan, WANG Zhimiao, LI Fang, XUE Wei, ZHAO Xinqiang, WANG Yanji. Efficient catalytic performance of CuO-CeO2/TiO2 for CO oxidation at low-temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4264-4274. |
[11] | LU Yang, ZHOU Jinsong, ZHOU Qixin, WANG Tang, LIU Zhuang, LI Bohao, ZHOU Lingtao. Leaching mechanism of Hg-absorption products on CeO2/TiO2 sorbentsin syngas [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3875-3883. |
[12] | WANG Zhicai, LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu. Synthesis and performance of a superplasticizer based on coal-based humic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3634-3642. |
[13] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[14] | ZHAN Yong, WANG Hui, WEI Tingting, ZHU Xingyu, WANG Xiankai, CHEN Sisi, DONG Bin. In situ reduction effect of Mn2+ enhanced ozone conditioning on sludge in biological treatment process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3253-3260. |
[15] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |