Chemical Industry and Engineering Progree ›› 2017, Vol. 36 ›› Issue (01): 232-246.DOI: 10.16085/j.issn.1000-6613.2017.01.030
Previous Articles Next Articles
GAO Yanhong1, SHI Yu2, TIAN Chao2, LI Qun1, LIU Weizhe3
Received:
2016-06-02
Revised:
2016-06-28
Online:
2017-01-05
Published:
2017-01-05
高艳红1, 石瑜2, 田超2, 李群1, 刘玮哲3
通讯作者:
李群,教授,博士生导师,主要从事制浆清洁生产、植物纤维资源综合利用方面的研究。E-mail:liqun@tust.edu.cn。
作者简介:
高艳红(1988-),女,博士研究生。通讯作者:李群,教授,博士生导师,主要从事制浆清洁生产、植物纤维资源综合利用方面的研究。E-mail:liqun@tust.edu.cn。
基金资助:
CLC Number:
GAO Yanhong, SHI Yu, TIAN Chao, LI Qun, LIU Weizhe. Properties and preparation progress of microfibrillated cellulose: a review[J]. Chemical Industry and Engineering Progree, 2017, 36(01): 232-246.
高艳红, 石瑜, 田超, 李群, 刘玮哲. 微纤化纤维素及其制备技术的研究进展[J]. 化工进展, 2017, 36(01): 232-246.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017.01.030
[1] SIMON J,M LLER H,KOCH R,et al. Thermoplastic and biodegradable polymers of cellulose[J]. Polymer Degradation and Stability,1998,59(1):107-115. [2] DIOTALLEVI F,MULDER B. The cellulose synthase complex:a polymerization driven supramolecular motor[J]. Biophys. J.,2007,92(8):2666-2673. [3] ZHU H,FANG Z,PRESTON C,et al. Transparent paper:fabrications,properties,and device applications[J]. Energ. Environ. Sci.,2014,7(1):269-287. [4] BESSUEILLE L,BULONE V. A survey of cellulose biosynthesis in higher plants[J]. Plant Biotechnol.,2008,25(3):315-322. [5] KAMEL S. Nanotechnology and its applications in lignocellulosic composites,a mini review[J]. Express Polym. Lett.,2007,1(9):546-575. [6] LAVOINE N,DESLOGES I,DUFRESNE A,et al. Microfibrillated cellulose--its barrier properties and applications in cellulosic materials:a review[J]. Carbohydrate Polymers,2012,90(2):735-764. [7] German Version. Nanotechnologies--terminology and definitions for nano-objects--nanoparticle,nanofibre and nanoplate (ISO/TS 27687:2008)[S]. German Version:Vornorm DIN CEN ISO/TS,2008. [8] OSONG S H,NORGREN S,ENGSTRAND P. Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose,and applications relating to papermaking:a review[J]. Cellulose,2016,23(1):93-123. [9] ABDUL KHALIL H P,DAVOUDPOUR Y,ISLAM M N,et al. Production and modification of nanofibrillated cellulose using various mechanical processes:a review[J]. Carbohydrate Polymer,2014,99:649-665. [10] TAPPI. Proposed new TAPPI standard:Standard terms and their definition for cellulose nanomaterial[M]. TAPPI,2011. [11] ROMAN M,WINTER W T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose[J]. Biomacromolecules,2004,5(5):1671-1677. [12] CHEN L,WANG Q,HIRTH K,et al. Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis[J]. Cellulose,2015,(3):1753-1762. [13] SYVERUD K,CHINGA-CARRASCO G,TOLEDO J,et al. A comparative study of Eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils[J]. Carbohydrate Polymers,2011,84(3):1033-1038. [14] SIRÓ I,PLACKETT D. Microfibrillated cellulose and new nanocomposite materials:a review[J]. Cellulose,2010,17(3):459-494. [15] SASSI J F,CHANZY H. Ultrastructural aspects of the acetylation of cellulose[J]. Cellulose,1995,2(2):111-127. [16] IWAMOTO S,KAI W,ISOGAI T,et al. Comparison study of TEMPO-analogous compounds on oxidation efficiency of wood cellulose for preparation of cellulose nanofibrils[J]. Polym. Degrad. Stab.,2010,95(8):1394-1398. [17] UETANI K,YANO H. Nanofibrillation of wood pulp using a high-speed blender[J]. Biomacromolecules,2011,12(2):348-353. [18] AMIRALIAN N,ANNAMALAI P K,MEMMOTT P,et al. Isolation of cellulose nanofibrils from Triodia pungens via different mechanical methods[J]. Cellulose,2015,22(4):2483-2498. [19] LEITNER J,HINTERSTOISSER B,WASTYN M,et al. Sugar beet cellulose nanofibril-reinforced composites[J]. Cellulose,2007,14(5):419-425. [20] ZIMMERMANN T,BORDEANU N,STRUB E. Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential[J]. Carbohydrate Polymers,2010,79(4):1086-1093. [21] LIIMATAINEN H,VISANKO M,SIRVI J A,et al. Enhancement of the nanofibrillation of wood cellulose through sequential periodate-chlorite oxidation[J]. Biomacromolecules,2012,13(5):1592-1597. [22] NAKAGAITO A N,YANO H. The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites[J]. Appl. Phys. A,2004,78(4):547-552. [23] LPEZ-RUBIO A,LAGARON J M,ANKERFORS M,et al. Enhanced film forming and film properties of amylopectin using micro-fibrillated cellulose[J]. Carbohydrate Polymers,2007,47(3):249-278. [24] HERRICK F W,CASEBIER R L,HAMILTON J K,et al. Microfibrillated cellulose:morphology and accessibility[J]. J. Appl. Polym. Sci.:Appl. Polym. Symp.(United States),1983,37:5039044. [25] TURBAK A F,SNYDER F W,SANDBERG K R. Microfibrillated cellulose,a new cellulose product:properties,uses,and commercial potential[C]//NewYork:J. Appl. Polym. Sci.:Appl. Polym. Symp.(United States),1983-01-01. [26] TURBAK A F,SNYDER F W,SANDBERG K R. Suspensions containing microfibrillated cellulose:US445272[P]. 1984-07-05. [27] DUFRESNE A,DUPEYRE D,VIGNON M R. Cellulose microfibrils from potato tuber cells:processing and characterization of starch–cellulose microfibril composites[J]. J. Appl. Polym. Sci.,2000,76(14):2080-2092. [28] HABIBI Y,MAHROUZ M,VIGNON M R. Microfibrillated cellulose from the peel of prickly pear fruits[J]. Food Chem.,2009,115(2):423-429. [29] SPENCE K L,VENDITTI R A,ROJAS O J,et al. A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods[J]. Cellulose,2011,18(4):1097-1111. [30] SPENCE K L,VENDITTI R A,HABIBI Y,et al. The effect of chemical composition on microfibrillar cellulose films from wood pulps:mechanical processing and physical properties[J]. Bioinformation,2010,101(101):5961-5968. [31] WANG B,SAIN M. Dispersion of soybean stock-based nanofiber in a plastic matrix[J]. Polym. Int.,2007,56(4):538-546. [32] IWAMOTO S,NAKAGAITO A N,YANO H,et al. Optically transparent composites reinforced with plant fiber-based nanofibers[J]. Appl. Phys. A,2005,81(6):1109-1112. [33] STELTE W,SANADI A R. Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps[J]. Indengchemres,2009,48(24):11211-11219. [34] KARANDE V S,BHARIMALLA A K,HADGE G B,et al. Nanofibrillation of cotton fibers by disc refiner and its characterization[J]. Fibers & Polymers,2011,12(3):399-404. [35] KUMAR A,SINGH S P,SINGH A K. Preparation and characterization of cellulose nanofibers from bleached pulp using a mechanical treatment method[J]. Tappi Journal,2014,13(5):25-31. [36] LEE S Y,CHUN S J,KANG I A,et al. Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films[J]. Journal of Industrial & Engineering Chemistry,2009,15(1):50-55. [37] CHRISTIAN A,SUSANNA A,PETER J,et al. Nanoscale cellulose films with different crystallinities and mesostructures--their surface properties and interaction with water[J]. Langmuir,2009,25(13):7675-7685. [38] FERRER A,FILPPONEN I,RODR GUEZ A,et al. Valorization of residual empty palm fruit bunch fibers (EPFBF)by microfluidization:production of nanofibrillated cellulose and EPFBF nanopaper[J]. Bioresour Technol.,2012,125C(12):249-255. [39] TANIGUCHI T,OKAMURA K. New films produced from microfibrillated natural fibres[J]. Polym. Int.,1998,47(3):291-294. [40] WANG Q Q,ZHU J Y,GLEISNER R,et al. Morphological development of cellulose nanofibrils (CNF) of a bleached eucalyptus pulp by mechanical fibrillation[J]. Cellulose,2012,19(5):1631-1643. [41] HASSAN M L,MATHEW A P,HASSAN E A,et al. Nanofibers from bagasse and rice straw:process optimization and properties[J]. Wood. Sci. Technol.,2012,46(1-3):193-205. [42] IWAMOTO S,NAKAGAITO A N,YANO H. Nano-fibrillation of pulp fibres for the processing of transparent nanocomposites[J]. Appl. Phys. A:Mater. Sci. Process,2007,89(2):461-466. [43] NAIR S S,ZHU J Y,DENG Y,et al. Characterization of cellulose nanofibrillation by micro grinding[J]. Mol. Ecol. Notes,2006,6(1):90-92. [44] HENRIKSSON M,ISAKSSON B P. Cellulose nanopaper structures of high toughness[J]. Biomacromolecules,2008,9(6):1579-1585. [45] MATSUDA Y,HIROSE M,UENO K. Super microfibrillated cellulose,process for producing the same,and coated paper and tinted paper using the same:US6214163[P]. 2001-04-10. [46] DUFRESNE A,CAVAILL J Y,HELBERT W. Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part Ⅱ:Effect of processing and modeling[J]. Polym. Compos.,1997,18(2):198-210. [47] ALEMDAR A,SAIN M. Biocomposites from wheat straw nanofibers:morphology,thermal and mechanical properties[J]. Composites Science & Technology,2008,68(2):557-565. [48] CHENG Q,WANG S,RIALS T G. Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication[J]. Composites Part A:Applied Science & Manufacturing,2009,40(2):218-224. [49] 冯若. 声化学基础研究中的声学问题[J]. 物理学进展,1996,16(3):402-412. FENG Ruo. the Acoustic problems in in fundamental study on sonochemistry[J]. Progress in Physics,1996,16(3):402-412. [50] IWASAKI T,LINDBERG B,MEIER H. The effect of ultrasonic treatment on individual wood fibers[J]. Svensk Papperstidning,1962,65(20):795-816. [51] WANG S,CHENG Q. A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication,part 1:process optimization[J]. J. Appl. Polym. Sci.,2009,113(2):1270-1275. [52] CHEN W,YU H,LIU Y,et al. Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process[J]. Cellulose,2011,18(2):433-442. [53] HUANG Z M,ZHANG Y Z,KOTAKI M,et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science & Technology,2003,63(15):2223-2253. [54] AULIN C,GÄLLSTEDT M,LINDSTRÖM T. Oxygen and oil barrier properties of microfibrillated cellulose films and coatings[J]. Cellulose,2010,17(3):559-574. [55] ANKERFORS M. Microfibrillated cellulose:energy-efficient preparation techniques and key properties[R]. Stockholm:KTH Royal Institute of Technology,2012. [56] ISOGAI A,TSUGUYUKI S,HAYAKA F. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale,2010,3(1):71-85. [57] ERIKSEN. The use of microfibrillated cellulose produced from kraft pulp as strength enhancer in TMP paper[J]. Nord. Pulp. Pap. Res. J.,2008,23(3):299-304. [58] SZCZĘSNA-ANTCZAK M,KAZIMIERCZAK J,ANTCZAK T. Nanotechnology--methods of manufacturing cellulose nanofibres[J]. Fibres and Texitiles in Eastern Europe,2012,20(2):8-12. [59] FUKUZUMI H,SAITO T,OKITA Y,et al. Thermal stabilization of TEMPO-oxidized cellulose[J]. Polym. Degrad. Stab.,2010,95(9):1502-1508. [60] MILLER Jack. Nanocellulose:technology applications,and markets[C]//Vancouver,BC:TAPPI International Conference on Nanotechnology for Renewable Materials. 2014. [61] HENRIKSSON M,HENRIKSSON G,BERGLUND L A,et al. An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers[J]. Eur. Polym. J.,2007,43(8):3434-3441. [62] MISSOUM K,BELGACEM M N,BRAS J. Nanofibrillated cellulose surface modification:a review[J]. Materials,2013,6(5):1745-1766. [63] PÄÄKKÖ M,VAPAAVUORI J,SILVENNOINEN R,et al. Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities[J]. Soft Matter,2008,4(12):2492-2499. [64] HOEGER I C,NAIR S S,RAGAUSKAS A J,et al. Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification[J]. Cellulose,2013,20(2):807-818. [65] Innventia. Nanocellulose for the first time on a large scale[R]. Sweden:Innventia. 2011. [66] QVINTUS Pia. Cellulose nanofibrils:overcoming challenges on the development of nanocellulose-based products[C]//Proceedings of the TAPPI International Conference on Nanotechnology for Renewable Materials,Atlanta,GA,2015. [67] SAIN M M,BHATNAGAR A. Manufacturing process of cellulose nanofibers from renewable feed stocks:US20080146701A1[P]. 2008-06-19. [68] SAIN M M,BHATNAGAR A. Manufacturing of nano-fibrils from natural fibres,agro based fibres and root fibres:CA2437616A1[P]. 2005-02-04. [69] HAN J Q,ZHOU C J,WU Y Q,et al. Self-assembling behavior of cellulose nanoparticles during freeze-drying:effect of suspension concentration,particle size,crystal structure,and surface charge[J]. Biomacromolecules,2013,14(5):1529-1540. [70] WALECKA J A. An investigation of low degree of substitution carboxymethylcelluloses[J]. Georgia Institute of Technology,1956, [71] WÅGBERG L,DECHER G,NORGREN M,et al. The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes[J]. Langmuir the Acs Journal of Surfaces & Colloids,2008,24(3):784-795. [72] EYHOLZER C,BORDEANU N,LOPEZ-SUEVOS F,et al. Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form[J]. Cellulose,2010,17(1):19-30. [73] TAIPALE T,ÖSTERBERG M,NYK NEN A,et al. Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength[J]. Cellulose,2010,17(17):1005-1020. [74] SIRÓ I,PLACKETT D,HEDENQVIST M,et al. Highly transparent films from carboxymethylated microfibrillated cellulose:the effect of multiple homogenization steps on key properties[J]. J. Appl. Polym. Sci.,2011,119(5):2652-2660. [75] SEMMELHACK M F,CHOU C S,CORTES D A. Nitroxyl-mediated electrooxidation of alcohols to aldehydes and ketones[J]. Jamchemsoc,1983,105(13):4492-4494. [76] SEMMELHACK M F,SCHMID C R,CORTES D A,et al. Oxidation of alcohols to aldehydes with oxygen and cupric ion,mediated by nitrosonium ion[J]. Jamchemsoc,1984,106(11):3374-3376. [77] ANELLI P L,BIFFI C,MONTANARI F,et al. Fast and selective oxidation of primary alcohols to aldehydes or to carboxylic acids and of secondary alcohols to ketones mediated by oxoammonium salts under two-phase conditions[J]. J. Org. Chem.,1987,52(12):2559-2562 [78] DE NOOY A E J,BESEMER A C,BEKKUM H V. Selective oxidation of primary alcohols mediated by nitroxyl radical in aqueous solution. Kinetics and mechanism[J]. Tetrahedron,1995,51(29):8023-8032. [79] ISOGAI A,KATO Y. Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation[J]. Cellulose,1998,5(3):153-164. [80] PÄÄKKÖNEN T,DIMIC-MISIC K,ORELMA H,et al. Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gel[J]. Cellulose,2015,23(1):1-17. [81] MAO L,LAW K,CLAUDE D,et al. Effects of carboxyl content on the characteristics of TMP long fibers[J]. Indengchemres,2008,47(11):3809-3812. [82] TSUGUYUKI S,SATOSHI K,YOSHIHARU N,et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose[J]. Biomacromolecules,2007,8(8):2485-2491. [83] YOSHIDA Y,YANAGISAWA M,ISOGAI A,et al. Preparation of polymer brush-type cellulose β-ketoesters using LiCl/1,3-dimethyl-2-imidazolidinone as a solvent[J]. Polymer,2005,46(8):2548-2557. [84] TSUGUYUKI S,MASAYUKI H,NAOYUKI T,et al. Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions[J]. Biomacromolecules,2009,10(7):1992-1996. [85] TSUGUYUKI S,YOSHIHARU N,JEAN-LUC P,et al. Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose[J]. Biomacromolecules,2006,7(6):1687-1691. [86] HIROTA M,TAMURA N,SAITO T,et al. Oxidation of regenerated cellulose with NaClO2 catalyzed by TEMPO and NaClO under acid-neutral conditions[J]. Carbohydrate Polymers,2009,78(2):330-335. [87] RINAUDO M. Periodate Oxidation of methylcellulose:characterization and properties of oxidized derivatives[J]. Polymers:Basel,2010,2(4):505-521. [88] KIM U J,KUGA S,WADA M,et al. Periodate oxidation of crystalline cellulose[J]. Biomacromolecules,2000,1(3):488-492. [89] LIIMATAINEN H,VISANKO M,SIRVI J,et al. Sulfonated cellulose nanofibrils obtained from wood pulp through regioselective oxidative bisulfite pre-treatment[J]. Cellulose,2013,20(2):741-749. [90] ZIMMERMANN M V,BORSOI C,LAVORATTI A,et al. Drying techniques applied to cellulose nanofibers[J]. J. Reinf. Plast. Compos.,2016, [91] BECK S,BOUCHARD J,BERRY R. Dispersibility in water of dried nanocrystalline cellulose[J]. Biomacromolecules,2012,13(5):1486-1494. [92] PENG Y,GARDNER D J,HAN Y,et al. Influence of drying method on the material properties of nanocellulose Ⅰ:thermostability and crystallinity[J]. Cellulose,2013,20(5):2379-2392. [93] PENG Y,GARDNER D J,HAN Y. Drying cellulose nanofibrils:in search of a suitable method[J]. Cellulose,2012,19(19):91-102. |
[1] | LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983. |
[2] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[3] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[4] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[5] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Effects of graphene oxide/carbon nanotubes on the properties of several typical polymer materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3012-3028. |
[6] | WANG Jiuheng, RONG Nai, LIU Kaiwei, HAN Long, SHUI Taotao, WU Yan, MU Zhengyong, LIAO Xuqing, MENG Wenjia. Enhanced CO2 capture performance and strength of cellulose-templated CaO-based pellets with steam reactivation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3217-3225. |
[7] | ZHANG Lele, QIAN Yundong, ZHU Huatong, FENG Silong, YANG Xiuna, YU Ying, YANG Qiang, LU Hao. Study on optimization limits of dehydration and desalination pretreatment of hydrogenated coal tar [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2298-2305. |
[8] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
[9] | CHEN Shaohua, WANG Yihua, HU Qiangfei, HU Kun, CHEN Li’ai, LI Jie. Research progress on detection of Cr(Ⅵ) by electrochemically modified electrode [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2429-2438. |
[10] | SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui. Biosynthesis of zinc oxide nanoparticles and its application to antibacterial [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023. |
[11] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[12] | GE Weitong, LIAO Yalong, LI Mingyuan, JI Guangxiong, XI Jiajun. Preparation and dechlorination kinetics of Pd-Fe/MWCNTs bimetallic catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1885-1894. |
[13] | YIN Ming, GUO Jin, PANG Jifeng, WU Pengfei, ZHENG Mingyuan. Deactivation mechanisms and stabilizing strategies for Cu based catalysts in reactions with hydrogen [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1860-1868. |
[14] | GUO Shuaishuai, CHEN Jinlu, JIN Liangchenglong, TAO Zui, CHEN Xiaoli, PENG Guowen. Research progress of porous aromatic frameworks based on uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1426-1436. |
[15] | CHEN Yi, GUO Yaoli, YE Haixing, LI Yuxuan, NIU Q.Jason. Application of two-dimensional nanomaterials in pervaporation desalination membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1437-1447. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |