Chemical Industry and Engineering Progree ›› 2017, Vol. 36 ›› Issue (01): 166-173.DOI: 10.16085/j.issn.1000-6613.2017.01.021
Previous Articles Next Articles
ZHAO Fei, LI Yuan, ZHANG Yan, TAN Xiaoyao
Received:
2016-04-12
Revised:
2016-05-30
Online:
2017-01-05
Published:
2017-01-05
赵飞, 李渊, 张岩, 谭小耀
通讯作者:
李渊,副教授,主要从事甲醇转化和脱硝相关催化剂及工艺过程研究。E-mail:liyuan@tjpu.edu.cn。
作者简介:
赵飞(1990-),男,硕士研究生。
基金资助:
CLC Number:
ZHAO Fei, LI Yuan, ZHANG Yan, TAN Xiaoyao. Research progress of SSZ-13 and SAPO-34 zeolites for methanol to olefins[J]. Chemical Industry and Engineering Progree, 2017, 36(01): 166-173.
赵飞, 李渊, 张岩, 谭小耀. 对比SSZ-13和SAPO-34分子筛在甲醇制烯烃中的研究进展[J]. 化工进展, 2017, 36(01): 166-173.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2017.01.021
[1] STÖCKER M. Methanol-to-hydrocarbons:catalytic materials and their behavior[J]. Microporous and Mesoporous Materials,1999,29(1):3-48. [2] HEMELSOET K,MYNSBRUGGE J V D,WISPELAERE K D,et al. Unraveling the reaction mechanisms governing methanol-to-olefins catalysis by theory and experiment[J]. ChemPhysChem,2013,14(8):1526-1545. [3] LOK B M,MESSINA C A,PATTON R L,et al. Silicoaluminophosphate molecular sieves:another new class of microporous crystalline inorganic solids[J]. Journal of the American Chemical Society,1984,106(20):6092-6093. [4] TIAN P,WEI Y,YE M,et al. Methanol to olefins (MTO):from fundamentals to commercialization[J]. ACS Catalysis,2015,5(3):1922-1938. [5] ZONES S I. Zeolite SSZ-13 and its method of preparation:US4544538[P]. 1985-10-01. [6] 杨博,郭翠梨,程景耀. SSZ-13分子筛的合成及应用进展[J]. 化工进展,2014,33(2):368-373. YANG B,GUO C L,CHENG J Y. Progress in synthesis and application of SSZ-13 zeolite[J]. Chemical Industry and Engineering Progress,2014,33(2):368-373. [7] 代跃利,王磊,刘德阳. 用于催化甲醇制烯烃的SAPO-34分子筛合成的研究进展[J]. 化工进展,2015,34(3):731-737. DAI Y L,WANG L,LIU D Y. Progress in the synthesis of SAPO-34 molecular sieve for the conversion of methanol to olefins[J]. Chemical Industry and Engineering Progress,2015,34(3):731-737. [8] WANG C M,WANG Y D,DU Y J,et al. Similarities and differences between aromatic-based and olefin-based cycles in H-SAPO-34 and H-SSZ-13 for methanol-to-olefins conversion:insights from energetic span model[J]. Catalysis Science & Technology,2015,5(9):4354-4364. [9] LIU X Z,LIU Q,LU S W. Selenium-catalyzed reduction of 1-nitronaphthalene to 1-naphthylamine with CO/H2O[J]. Journal of Catalysis,2004,25(8):597-598. [10] YUEN L T,ZONES S,HARRIS T,et al. Product selectivity in methanol to hydrocarbon conversion for isostructural compositions of AFI and CHA molecular sieves[J]. Microporous Materials,1994,2(2):105-117. [11] BLEKEN F,BJØRGEN M,PALUMBO L,et al. The effect of acid strength on the conversion of methanol to olefins over acidic microporous catalysts with the CHA topology[J]. Topics in Catalysis,2009,52(3):218-228. [12] MARTINS G,BERLIER G,COLUCCIA S,et al. Revisiting the nature of the acidity in chabazite-related silicoaluminophosphates:combined FTIR and 29Si MAS NMR study[J]. The Journal of Physical Chemistry C,2007,111(1):330-339. [13] QIAN Q,RUIZ-MARTíNEZ J,MOKHTAR M,et al. Single-catalyst particle spectroscopy of alcohol-to-olefins conversions:comparison between SAPO-34 and SSZ-13[J]. Catalysis today,2014,226:14-24. [14] ZHU Q,KONDO J N,OHNUMA R,et al. The study of methanol-to-olefin over proton type aluminosilicate CHA zeolites[J]. Microporous and Mesoporous Materials,2008,112(1):153-161. [15] DAHL I M,KOLBOE S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34:Ⅰ. Isotopic labeling studies of the co-reaction of ethene and methanol[J]. Journal of Catalysis,1994,149(2):458-464. [16] DAHL I M,KOLBOE S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34:2. Isotopic labeling studies of the co-reaction of propene and methanol[J]. Journal of Catalysis,1996,161(1):304-309. [17] ARSTAD B,KOLBOE S. The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction[J]. Journal of the American Chemical Society,2001,123(33):8137-8138. [18] SONG W,HAW J F,NICHOLAS J B,et al. Methylbenzenes are the organic reaction centers for methanol-to-olefin catalysis on HSAPO-34[J]. Journal of the American Chemical Society,2000,122(43):10726-10727. [19] BJØRGEN M,BONINO F,KOLBOE S,et al. Spectroscopic evidence for a persistent benzenium cation in zeolite H-beta[J]. Journal of the American Chemical Society,2003,125(51):15863-15868. [20] SVELLE S,JOENSEN F,NERLOV J,et al. Conversion of methanol into hydrocarbons over zeolite H-ZSM-5:ethene formation is mechanistically separated from the formation of higher alkenes[J]. Journal of the American Chemical Society,2006,128(46):14770-14771. [21] CUI Z M,LIU Q,SONG W G,et al. Insights into the mechanism of methanol-to-olefin conversion at zeolites with systematically selected framework structures[J]. Angewandte Chemie(International Edition),2006,45(39):6512-6515. [22] CUI Z M,LIU Q,MA Z,et al. Direct observation of olefin homologations on zeolite ZSM-22 and its implications to methanol to olefin conversion[J]. Journal of Catalysis,2008,258(1):83-86. [23] SONG W,FU H,HAW J F. Selective synthesis of methylnaphthalenes in HSAPO-34 cages and their function as reaction centers in methanol-to-olefin catalysis[J]. The Journal of Physical Chemistry B,2001,105(51):12839-12843. [24] DEIMUND M A,HARRISON L,LUNN J D,et al. Effect of heteroatom concentration in SSZ-13 on the methanol-to-olefins reaction[J]. ACS Catalysis,2015,6:542-550. [25] SEO G,KIM J H,JANG H G. Methanol-to-olefin conversion over zeolite catalysts:active intermediates and deactivation[J]. Catalysis Surveys from Asia,2013,17(3/4):103-118. [26] HEREIJGERS B P,BLEKEN F,NILSEN M H,et al. Product shape selectivity dominates the methanol-to-olefins(MTO)reaction over H-SAPO-34 catalysts[J]. Journal of Catalysis,2009,264(1):77-87. [27] 陈景润. 笼结构小孔分子筛催化甲醇制烯烃反应机理研究[D]. 大连:中国科学院大连化学物理研究所,2014. CHEN Jingrun. The mechanism of methanol to olefins reaction catalyzed by small hole in cage structure[D]. Dalian:Dalian Institute of Chemical Physics,Chinese Academy of Sciences,2014. [28] WANG C M,WANG Y D,XIE Z K. Insights into the reaction mechanism of methanol-to-olefins conversion in HSAPO-34 from first principles:are olefins themselves the dominating hydrocarbon pool species?[J]. Journal of Catalysis,2013,301:8-19. [29] XU S,ZHENG A,WEI Y,et al. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites[J]. Angewandte Chemie(International Edition),2013,52(44):11564-11568. [30] HAW J F,SONG W,MARCUS D M,et al. The mechanism of methanol to hydrocarbon catalysis[J]. Accounts of Chemical Research,2003,36(5):317-326. [31] WANG C M,WANG Y D,XIE Z K,et al. Methanol to olefin conversion on HSAPO-34 zeolite from periodic density functional theory calculations:a complete cycle of side chain hydrocarbon pool mechanism[J]. The Journal of Physical Chemistry C,2009,113(11):4584-4591. [32] RUIZ-MARTÍNEZ J. Reaction temperature influences the nature of the active and deactivating species during methanol-to-olefins conversion over H-SSZ-13[C]//24th North American Catalysis Society Meeting,2015. [33] BJØRGEN M,SVELLE S,JOENSEN F,et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5:on the origin of the olefinic species[J]. Journal of Catalysis,2007,249(2):195-207. [34] SVELLE S,OLSBYE U,JOENSEN F,et al. Conversion of methanol to alkenes over medium-and large-pore acidic zeolites:steric manipulation of the reaction intermediates governs the ethene/propene product selectivity[J]. The Journal of Physical Chemistry C,2007,111(49):17981-17984. [35] MCCANN D M,LESTHAEGHE D,KLETNIEKS P W,et al. A complete catalytic cycle for supramolecular methanol-to-olefins conversion by linking theory with experiment[J]. Angewandte Chemie,2008,120(28):5257-5260. [36] LESTHAEGHE D,MYNSBRUGGE J V D,VICHEL M,et al. Full theoretical cycle for both ethene and propene formation during methanol-to-olefin conversion in H-ZSM-5[J]. ChemCatChem,2011,3(1):208-212. [37] HWANG A,PRIETO-CENTURION D,BHAN A. Isotopic tracer studies of methanol-to-olefins conversion over HSAPO-34:the role of the olefins-based catalytic cycle[J]. Journal of Catalysis,2016,337:52-56. [38] SUN S,LI J. Kinetics of the entire methanol to olefins process over SAPO-34 catalyst[J]. Progress in Reaction Kinetics and Mechanism,2015,40(1):22-34. [39] VAN SPEYBROECK V,HEMELSOET K,DE WISPELAERE K,et al. Mechanistic studies on chabazite-type methanol-to-olefin catalysts:insights from time-resolved UV/vis microspectroscopy combined with theoretical simulations[J]. ChemCatChem,2013,5(1):173-184. [40] DAI W,WANG C,DYBALLA M,et al. Understanding the early stages of the methanol-to-olefin conversion on H-SAPO-34[J]. ACS Catalysis,2014,5(1):317-326. [41] QI G,XIE Z,YANG W,et al. Behaviors of coke deposition on SAPO-34 catalyst during methanol conversion to light olefins[J]. Fuel Processing Technology,2007,88(5):437-441. [42] CHEN D,MOLJORD K,HOLMEN A. A methanol to olefins review:diffusion,coke formation and deactivation on SAPO type catalysts[J]. Microporous and Mesoporous Materials,2012,164:239-250. [43] LI J,WEI Y,CHEN J,et al. Observation of heptamethylbenzenium cation over SAPO-type molecular sieve DNL-6 under real MTO conversion conditions[J]. Journal of the American Chemical Society,2011,134(2):836-839. [44] 胡浩,叶丽萍,应卫勇,等. SAPO-34分子筛催化剂上甲醇制烯烃反应的本征动力学[J]. 华东理工大学学报:社会科学版,2009(5):655-660. HU H,YE L P,YING W Y,et al. Intrinsic kinetics for methanol-to-olefin reaction based on SAPO-34 catalyst[J]. Journal of East China University of Science and Technology(Natural Science Edition)2009(5):655-660. [45] MORES D,KORNATOWSKI J,OLSBYE U,et al. Coke formation during the methanol-to-olefin conversion:in situ microspectroscopy on individual H-ZSM-5 crystals with different Brønsted acidity[J]. Chemistry:A European Journal,2011,17(10):2874-2884. [46] DAHL I M,MOSTAD H,AKPORIAYE D,et al. Structural and chemical influences on the MTO reaction:a comparison of chabazite and SAPO-34 as MTO catalysts[J]. Microporous and Mesoporous Materials,1999,29(1):185-190. [47] GUISNET M,COSTA L,RIBEIRO F R. Prevention of zeolite deactivation by coking[J]. Journal of Molecular Catalysis A:Chemical,2009,305(1):69-83. [48] DAI W,WANG X,WU G,et al. Methanol-to-olefin conversion on silicoaluminophosphate catalysts:effect of Brønsted acid sites and framework structures[J]. ACS catalysis,2011,1(4):292-299. [49] DAI W,LI N,LI L,et al. Unexpected methanol-to-olefin conversion activity of low-silica aluminophosphate molecular sieves[J]. Catalysis Communications,2011,16(1):124-127. [50] DAI W,WANG X,WU G,et al. Methanol-to-olefin conversion catalyzed by low-silica AlPO-34 with traces of Brønsted acid sites:combined catalytic and spectroscopic investigations[J]. ChemCatChem,2012,4(9):1428-1435. [51] YING L,YE M,CHENG Y,et al. Characteristics of coke deposition over a SAPO-34 catalyst in the methanol-to-olefins reaction[J]. Petroleum Science and Technology,2015,33(9):984-991. [52] BORODINA E,MEIRER F,LEZCANO-GONZÁLEZ I,et al. Influence of the reaction temperature on the nature of the active and deactivating species during methanol to olefins conversion over H-SSZ-13[J]. ACS Catalysis,2015,5(2):992-1003. [53] ROSTAMI R B,GHAVIPOUR M,DI Z,et al. Study of coke deposition phenomena on the SAPO-34 catalyst and its effects on light olefin selectivity during the methanol to olefin reaction[J]. RSC Advances,2015,5(100):81965-81980. [54] ZHU X. On the role of defect sites in the premature deactivation of SSZ-13 zeolite in the methanol-to-olefins reaction[C]//24th North American Catalysis Society Meeting,2015. [55] ZHAO H,SHI S,WU J,et al. Charge compensation dominates the distribution of silica in SAPO-34[J]. Chinese Journal of Catalysis,2016,37(2):227-233. |
[1] | WANG Jingang, ZHANG Jianbo, TANG Xuejiao, LIU Jinpeng, JU Meiting. Research progress on modification of Cu-SSZ-13 catalyst for denitration of automobile exhaust gas [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4636-4648. |
[2] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[3] | WANG Darui, SUN Hongmin, XUE Mingwei, WANG Yiyan, LIU Wei, YANG Weimin. Efficient synthesis of fully crystalline ZSM-5 zeolite catalyst by microwave method and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3582-3588. |
[4] | REN Zhongyuan, HE Jinlong, YUAN Qing. Research progress on intercrystalline defects control and remediation technologies for zeolite membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2454-2463. |
[5] | NING Shuying, SU Yaxin, YANG Honghai, WEN Nini. Research progress on supported Cu-based zeolite catalysts for the selective catalytic reduction of NO x with hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1308-1320. |
[6] | HUO Wentao, LIU Wen, YU Qiang, AN Jie, ZHU Xiangxue, QIN Yucai, LI Xiujie. Oligomerization of isobutene over MWW zeolite based catalysts [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5205-5212. |
[7] | LIU Shulin, YANG Na, ZHANG Longfei, SUN Yongli, JIANG Bin, XIAO Xiaoming, TANTAI Xiaowei, ZHANG Lyuhong. Al-doped Cu/SBA-15 catalysts for the hydrogenation of dimethyl adipate to 1,6-hexanediol [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 289-296. |
[8] | JU Yanan, CHENG Xiangwei, YANG Xiazhen, HUO Chao, LIU Huazhang. Effects of Mg and polyethylene glycol modification of ZSM-5 catalyst on cracking bagasse [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 221-228. |
[9] | WU Chuanpeng, LI Chuankun, YANG Zhe, GOU Chengdong, GAO Xinjiang. Research progress of SO2 removal by solid adsorbents [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3840-3854. |
[10] | LIU Xingyuan, ZHANG Yongfeng, XIAO Kai, GAO Jingze. Research progress of molecular sieve materials in the adsorption of VOCs [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2504-2510. |
[11] | LIN Dong, FENG Xiang, LIU Yibin, CHEN Xiaobo, YANG Chaohe. Research progress on the controllable synthesis of high-performance titanium silicalite and its catalytic propene epoxidation with gaseous hydrogen and oxygen [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2389-2403. |
[12] | LEI Qian, LIANG Linlin, LYU Gaomeng, CHEN Honglin. Synthesis of polyoxymethylene dimethyl ethers with shaped ZSM-5 catalysts in a fixed-bed reactor [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1908-1915. |
[13] | HONG Qian, BAI Rui, PENG Xinhua, SUN Ming, LIU Shanshan, JIAO Linyu, MA Xiaoxun. Studies on the catalytic performance of supported copper in the α-nitration of naphthalene [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1894-1899. |
[14] | LI Wen, ZHAN Guowu, HUANG Jiale, LI Qingbiao. Synthesis of ZnZrO x &bio-SAPO-34 bifunctional catalysts derived from metal organic frameworks and rice husk template for CO2 hydrogenation to light olefins [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1298-1308. |
[15] | HAN He, ZHANG Xinhao, ZHANG Anfeng, ZHAO Chenghao, SHI Chuan, YU Zhengxi, SONG Chunshan, GUO Xinwen. Development of shape-selective alkylation of toluene with methanol to para-xylene [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5783-5799. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |