Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (4): 1908-1915.DOI: 10.16085/j.issn.1000-6613.2021-0907
• Industrial catalysis • Previous Articles Next Articles
LEI Qian1,2(), LIANG Linlin1,2, LYU Gaomeng1,2, CHEN Honglin1,2()
Received:
2021-04-27
Revised:
2021-08-07
Online:
2022-04-25
Published:
2022-04-23
Contact:
CHEN Honglin
雷骞1,2(), 梁琳琳1,2, 吕高孟1,2, 陈洪林1,2()
通讯作者:
陈洪林
作者简介:
雷骞(1980—),男,硕士,副研究员,研究方向为工业催化。E-mail:基金资助:
CLC Number:
LEI Qian, LIANG Linlin, LYU Gaomeng, CHEN Honglin. Synthesis of polyoxymethylene dimethyl ethers with shaped ZSM-5 catalysts in a fixed-bed reactor[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 1908-1915.
雷骞, 梁琳琳, 吕高孟, 陈洪林. ZSM-5分子筛固定床催化合成聚甲氧基二甲醚[J]. 化工进展, 2022, 41(4): 1908-1915.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0907
样品 | SiO2 /% | Al2O3 /% | Na2O /% | SiO2/Al2O3(摩尔比) | Al浓度 /mmol·g-1 | 总酸量 /mmol·g-1 |
---|---|---|---|---|---|---|
ZSM-5-60 | 86.85 | 4.01 | 0.03 | 37 | 0.786 | 0.543 |
ZSM-5-100 | 93.68 | 1.50 | 0.20 | 106 | 0.295 | 0.463 |
ZSM-5-150 | 95.78 | 0.86 | 0.06 | 189 | 0.168 | 0.262 |
ZSM-5-200 | 95.47 | 0.64 | 0.07 | 254 | 0.126 | 0.272 |
ZSM-5-400 | 94.77 | 0.38 | 0.03 | 424 | 0.075 | 0.190 |
样品 | SiO2 /% | Al2O3 /% | Na2O /% | SiO2/Al2O3(摩尔比) | Al浓度 /mmol·g-1 | 总酸量 /mmol·g-1 |
---|---|---|---|---|---|---|
ZSM-5-60 | 86.85 | 4.01 | 0.03 | 37 | 0.786 | 0.543 |
ZSM-5-100 | 93.68 | 1.50 | 0.20 | 106 | 0.295 | 0.463 |
ZSM-5-150 | 95.78 | 0.86 | 0.06 | 189 | 0.168 | 0.262 |
ZSM-5-200 | 95.47 | 0.64 | 0.07 | 254 | 0.126 | 0.272 |
ZSM-5-400 | 94.77 | 0.38 | 0.03 | 424 | 0.075 | 0.190 |
样品 | 总酸量(200℃脱附) /μmol·g-1 | 中强酸量(350℃脱附) /μmol·g-1 | |||||
---|---|---|---|---|---|---|---|
L酸 | B 酸 | B/L | L酸 | B 酸 | B/L | ||
ZSM-5-60 | 28.7 | 492.6 | 17.2 | 25.7 | 366.3 | 14.3 | |
ZSM-5-100 | 39.6 | 153.2 | 3.9 | 19.3 | 112.4 | 5.8 | |
ZSM-5-150 | 15.7 | 91.7 | 5.8 | 14.2 | 70.6 | 5.0 | |
ZSM-5-200 | 8.6 | 49.4 | 5.7 | 6.4 | 36.7 | 5.7 | |
ZSM-5-400 | 17.6 | 29.0 | 1.6 | 12.4 | 19.5 | 1.6 |
样品 | 总酸量(200℃脱附) /μmol·g-1 | 中强酸量(350℃脱附) /μmol·g-1 | |||||
---|---|---|---|---|---|---|---|
L酸 | B 酸 | B/L | L酸 | B 酸 | B/L | ||
ZSM-5-60 | 28.7 | 492.6 | 17.2 | 25.7 | 366.3 | 14.3 | |
ZSM-5-100 | 39.6 | 153.2 | 3.9 | 19.3 | 112.4 | 5.8 | |
ZSM-5-150 | 15.7 | 91.7 | 5.8 | 14.2 | 70.6 | 5.0 | |
ZSM-5-200 | 8.6 | 49.4 | 5.7 | 6.4 | 36.7 | 5.7 | |
ZSM-5-400 | 17.6 | 29.0 | 1.6 | 12.4 | 19.5 | 1.6 |
1 | BURGER J, SIEGERT M, STRÖFER E, et al. Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: properties, synthesis and purification concepts[J]. Fuel, 2010, 89(11): 3315-3319. |
2 | HAN D Y, CAO Z B, SHI W W, et al. Influence of polyoxymethylene dimethyl ethers on diesel fuel properties[J]. Energy Sources A: Recovery, Utilization, and Environmental Effects, 2016, 38(18): 2687-2692. |
3 | LI D H, GAO Y X, LIU S H, et al. Effect of polyoxymethylene dimethyl ethers addition on spray and atomization characteristics using a common rail diesel injection system[J]. Fuel, 2016, 186: 235-247. |
4 | YANG H, LI X H, WANG Y, et al. Pyrolysis characteristic analysis of particulate matter from diesel engine run on diesel/polyoxymethylene dimethyl ethers blends based on nanostructure and thermogravimetry[J]. Aerosol and Air Quality Research, 2016, 16(10): 2560-2569. |
5 | YANG H, LI X H, WANG Y, et al. Experimental investigation into the oxidation reactivity and nanostructure of particulate matter from diesel engine fuelled with diesel/polyoxymethylene dimethyl ethers blends[J]. Scientific Reports, 2016, 6: 37611. |
6 | LIU J L, WANG H, LI Y, et al. Effects of diesel/PODE (polyoxymethylene dimethyl ethers) blends on combustion and emission characteristics in a heavy duty diesel engine[J]. Fuel, 2016, 177: 206-216. |
7 | BURGER J, STRÖFER E, HASSE H. Chemical equilibrium and reaction kinetics of the heterogeneously catalyzed formation of poly(oxymethylene) dimethyl ethers from methylal and trioxane[J]. Industrial & Engineering Chemistry Research, 2012, 51(39): 12751-12761. |
8 | 曹晨, 秦晓飞, 张旭斌, 等. 聚甲氧基二甲醚合成反应动力学研究进展[J]. 化工进展, 2020, 39(12): 5021-5028. |
CAO Chen, QIN Xiaofei, ZHANG Xubin, et al. Advances of formation kinetics of polymethoxy dimethyl ether[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5021-5028. | |
9 | SONG H Y, KANG M R, JIN F X, et al. Brønsted-acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dialkyl ethers[J]. Chinese Journal of Catalysis, 2017, 38(5): 853-861. |
10 | WU Q, WANG M, HAO Y, et al. Synthesis of polyoxymethylene dimethyl ethers catalyzed by brønsted acid ionic liquids with alkanesulfonic acid groups[J]. Industrial & Engineering Chemistry Research, 2014, 53(42): 16254-16260. |
11 | YANG Z Y, HU Y F, MA W T, et al. Synthesis of polyoxymethylene dimethyl ethers catalyzed by pyrrolidinonium-based ionic liquids[J]. Chemical Engineering &Technology, 2017, 40(10): 1784-1791. |
12 | WANG D, ZHAO F, ZHU G L, et al. Production of eco-friendly poly(oxymethylene) dimethyl ethers catalyzed by acidic ionic liquid: a kinetic investigation[J]. Chemical Engineering Journal, 2018, 334: 2616-2624. |
13 | FU W H, LIANG X M, ZHANG H D, et al. Shape selectivity extending to ordered supermicroporous aluminosilicates[J]. Chemical Communications, 2015, 51(8): 1449-1452. |
14 | 耿雪丽, 孟莹, 从海峰, 等. 聚甲氧基二甲醚合成工艺及产业化述评[J]. 化工进展, 2020, 39(12): 4993-5008. |
GENG Xueli, MENG Ying, CONG Haifeng, et al. Review on the synthesis process and industrialization of polyoxymethylene dimethyl ethers[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4993-5008. | |
15 | BARANOWSKI C J, ROGER M, BAHMANPOUR A M, et al. Nature of synergy between brønsted and lewis acid sites in Sn-beta zeolites for polyoxymethylene dimethyl ethers synthesis[J]. ChemSusChem, 2019, 12(19): 4421-4431. |
16 | 周林. 改性MCM-22分子筛的制备及其在催化合成聚甲氧基二甲醚中的应用[D]. 西安: 西北大学, 2019. |
ZHOU Lin. Preparation of modified MCM-22 zeolites and its performance in synthesis of polyoxymethylene dimethyl ethers[D]. Xi’an: Northwest University, 2019. | |
17 | 李国斌, 徐彩霞, 陈立宇. Al-MCM-41分子筛的制备及其催化合成聚甲氧基二甲醚[J]. 石油化工, 2021, 50(2): 103-111. |
LI G B, XU C X, CHEN L Y. Preparation of Al-MCM-41 zeolite and its catalytic performance in the synthesis of polymethoxy dimethyl ether[J]. Petrochemical Technology, 2021, 50(2): 103-111. | |
18 | WANG R Y, WU Z W, QIN Z F, et al. Graphene oxide: an effective acid catalyst for the synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene[J]. Catalysis Science & Technology, 2016, 6(4): 993-997. |
19 | SCHMITZ N, HOMBERG F, BERJE J, et al. Chemical equilibrium of the synthesis of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2015, 54(25): 6409-6417. |
20 | 高晓晨, 杨为民, 刘志成, 等. HZSM-5分子筛用于合成聚甲醛二甲基醚[J]. 催化学报, 2012, 33(8): 1389-1394. |
GAO X C, YANG W M, LIU Z C, et al. Catalytic performance of HZSM-5 molecular sieve for synthesis of polyoxymethylene dimethyl ethers[J]. Chinese Journal of Catalysis, 2012, 33(8): 1389-1394. | |
21 | WU J B, ZHU H Q, WU Z W, et al. High Si/Al ratio HZSM-5 zeolite: an efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene[J]. Green Chemistry, 2015, 17(4): 2353-2357. |
22 | BARANOWSKI C J, BAHMANPOUR A M, HÉROGUEL F, et al. Prominent role of mesopore surface area and external acid sites for the synthesis of polyoxymethylene dimethyl ethers (OME) on a hierarchical H-ZSM-5 zeolite[J]. Catalysis Science & Technology, 2019, 9(2): 366-376. |
23 | 张向京, 武朋涛, 张云, 等. HMCM-22分子筛负载磷钨酸催化合成聚甲醛二甲醚[J]. 化学反应工程与工艺, 2014, 30(2): 140-144. |
ZHANG X J, WU P T, ZHANG Y, et al. Synthesis of polyoxymethylene dimethyl ethers with HMCM-22 zeolite loading phosphotungstic acid as catalyst[J]. Chemical Reaction Engineering and Technology, 2014, 30(2): 140-144. | |
24 | 赵启, 王辉, 秦张峰, 等. 分子筛催化剂上甲醇与三聚甲醛缩合制聚甲醛二甲醚[J]. 燃料化学学报, 2011, 39(12): 918-923. |
ZHAO Q, WANG H, QIN Z F, et al. Synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene with molecular sieves as catalysts[J]. Journal of Fuel Chemistry and Technology, 2011, 39(12): 918-923. | |
25 | XUE Z Z, SHANG H Y, ZHANG Z L, et al. Efficient synthesis of polyoxymethylene dimethyl ethers on Al-SBA-15 catalysts with different Si/Al ratios and pore sizes[J]. Energy & Fuels, 2017, 31(1): 279-286. |
26 | BARANOWSKI C J, BAHMANPOUR A M, KRÖCHER O. Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): a review[J]. Applied Catalysis B: Environmental, 2017, 217: 407-420. |
27 | SEKI T, NAKAJO T, ONAKA M. The tishchenko reaction: a classic and practical tool for ester synthesis[J]. ChemInform, 2007, 35(8): 824-829. |
28 | FREIDING J, PATCAS F C, KRAUSHAAR-CZARNETZKI B. Extrusion of zeolites: properties of catalysts with a novel aluminium phosphate sintermatrix[J]. Applied Catalysis A: General, 2007, 328(2): 210-218. |
29 | LEE K Y, LEE H K, IHM S K. Influence of catalyst binders on the acidity and catalytic performance of HZSM-5 zeolites for methanol-to-propylene (MTP) process: single and binary binder system[J]. Topics in Catalysis, 2010, 53(3/4): 247-253. |
[1] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[2] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[3] | WANG Zhengkun, LI Sifang. Green synthesis of gemini surfactant decyne diol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 400-410. |
[4] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[5] | GU Yongzheng, ZHANG Yongsheng. Dynamic behavior and kinetic model of Hg0 adsorption by HBr-modified fly ash [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 498-509. |
[6] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[7] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[8] | WANG Xiaohan, ZHOU Yasong, YU Zhiqing, WEI Qiang, SUN Jinxiao, JIANG Peng. Synthesis and hydrocracking performance of Y molecular sieves with different crystal sizes [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4283-4295. |
[9] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
[10] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[11] | WANG Shuaiqi, WANG Congxin, WANG Xuelin, TIAN Zhijian. Solvent-free rapid synthesis of ZSM-12 zeolite [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3561-3571. |
[12] | WANG Darui, SUN Hongmin, XUE Mingwei, WANG Yiyan, LIU Wei, YANG Weimin. Efficient synthesis of fully crystalline ZSM-5 zeolite catalyst by microwave method and its catalytic performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3582-3588. |
[13] | YU Xixi, ZHANG Jinshuai, LEI Wen, LIU Chengguo. Research progress of self-healing photocuring polymeric materials based on dynamic covalent bonds [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3589-3599. |
[14] | WANG Zhicai, LIU Weiwei, ZHOU Cong, PAN Chunxiu, YAN Honglei, LI Zhanku, YAN Jingchong, REN Shibiao, LEI Zhiping, SHUI Hengfu. Synthesis and performance of a superplasticizer based on coal-based humic acid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3634-3642. |
[15] | YIN Pengzhen, WU Qin, LI Hansheng. Advances in catalysts for liquid-phase selective oxidation of methyl aromatic hydrocarbons [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2916-2943. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |