Chemical Industry and Engineering Progress ›› 2016, Vol. 35 ›› Issue (11): 3503-3510.DOI: 10.16085/j.issn.1000-6613.2016.11.018
Previous Articles Next Articles
LIU Li, GUO Rong, SUN Jin, DING Li, YANG Chengmin, DUAN Weiyu, YAO Yunhai
Received:
2016-03-08
Revised:
2016-05-10
Online:
2016-11-05
Published:
2016-11-05
刘丽, 郭蓉, 孙进, 丁莉, 杨成敏, 段为宇, 姚运海
通讯作者:
刘丽(1985-),女,博士,工程师,从事柴油加氢精制催化剂的研究开发。E-mail:liuli.fshy@sinopec.com。
作者简介:
刘丽(1985-),女,博士,工程师,从事柴油加氢精制催化剂的研究开发。E-mail:liuli.fshy@sinopec.com。
基金资助:
联合基金项目(U1463203)及中国石油化工集团公司项目。
CLC Number:
LIU Li, GUO Rong, SUN Jin, DING Li, YANG Chengmin, DUAN Weiyu, YAO Yunhai. The research development of diesel hydrodesulfurization catalysts[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3503-3510.
刘丽, 郭蓉, 孙进, 丁莉, 杨成敏, 段为宇, 姚运海. 柴油加氢脱硫催化剂的研究进展[J]. 化工进展, 2016, 35(11): 3503-3510.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2016.11.018
[1] 钱伯章. 满足国Ⅴ排放要求的汽油、柴油标准将提前至2016年底在全国实施[J]. 石油炼制与化工,2015,46(6):78.[2] BOUWENS S M A M,VANZON F B M,VANDIJK M P,et al. On the structural differences between alumina-supported comos type Ⅰ and alumina-,silica-,and carbon-supported comos type Ⅱphases studied by XAFS,MES,and XPS[J]. Journal of Catalysis,1994,146:375-393.[3] HENSEN E J M,KOOYMAN P J,MEER Y,et al. The relation between morphology and hydrotreating activity for supported MoS2 particles original research article[J]. Journal of Catalysis,2001,199:224-235.[4] NARINOBU K,BAS M V,LANGEVELD A D,et al. Reaction pathways on NiMo/Al2O3 catalysts for hydrodesulfurization of diesel fuel[J]. Applied Catalysis A:General,2005,293:11-23.[5] WALTON A S,LAURITSEN J V,TOPSØE H,et al. MoS2 nanoparticle morphologies in hydrodesulfurization catalysis studied by scanning tunneling microscopy[J]. Journal of Catalysis,2013,308:306-318.[6] LAURITSEN J V,BESENBACHER F. Atom-resolved scanning tunneling microscopy investigations of molecular adsorption on MoS2 and CoMoS hydrodesulfurization Catalysts[J]. Journal of Catalysis,2015,328:49-58.[7] EGORAVA M,PRINS R. The role of Ni and Co promoters in the simultaneous HDS of dibenzothiophene and HDN of amines over Mo/γ-Al2O3 catalysts[J]. Journal of Catalysis,2006,241:162-172.[8] FANG X C,GUO R,YANG C M. The development and application of catalysts for ultra-deep hydrodesulfurization of diesel[J]. Chinese Journal of Catalysis,2013,34:130-139.[9] 于淼,宋永一,郭蓉,FHUDS-5柴油深度脱硫催化剂国外工业应用分析[J]. 当代化工,2013(8):1140-1143.[10] Zepeda T A. Comparison and performance of different sulphided Ti-loaded mesostructured silica-supported CoMo catalysts in deep HDS[J]. Applied Catalysis A:General,2008,347(2):148-161.[11] Pawelec B,Fierro J L G,Montesinos A,et al. Influence of the acidity of nanostructured CoMo/P/Ti-HMS catalysts on the HDS of 4,6-DMDBT reaction pathways[J]. Applied Catalysis B:Environmental,2008,80(1/2):1-14.[12] 崔琰,高永灿,姜楠. 二苯并噻吩在催化裂化过程中的转化规律研究[J]. 石油炼制与化工,2011,42(6):6-10.[13] 陈焕章,李永开,赵地顺. 催化裂化汽油脱硫技术进展[J]. 化工科技,2004,12(3):46-51.[14] BYSKOV L S,HAMMER B,NORSKOV J K,et al. Sulfur bonding in MoS2 and Co-Mo-S structures[J]. Catalysis Letters,1997,47:177-182.[15] BYSKOV L S,NORSKOV J K,CLAUSEN B S,et al. DFT calculations of unpromoted and promoted MoS2-based hydrodesulfurization catalysts[J]. Journal of Catalysis,1999,187:109-122.[16] RAYBAUD P,HAFNER J,KRESSE G,et al. Ab initio study of the H2-H2S/MoS2 gas-solid interface:the nature of the catalytically active sites[J]. Journal of Catalysis,2000,189:129-146.[17] BERTRAND B,ELODIE D,ANTOINE H,et al. The influence of MoS2 slab 2D morphology and edge state on the properties of alumina-supported molybdenum sulfide catalysts[J]. Applied Catalysis A: General,2014,487:72-81.[18] CRISTOL S,PAUL J F,PAYEN E,et al. Theoretical study of the MoS2(100)surface:a chemical potential analysis of sulfur and hydrogen coverage[J]. J. Phys. Chem. B,2000,104:11220-11229.[19] TRAVERT A,NAKAMURA H,SANTEN R A,et al. Hydrogen activation on Mo-based sulfide catalysts,a periodic DFT study[J]. J. Am. Chem. Soc.,2002,124:7084-7095.[20] CRISTOL S,PAUL J F,PAYEN E,et al. Theoretical study of the MoS2(100) surface:a chemical potential analysis of sulfur and hydrogen coverageⅡeffect of the total pressure on surface stability[J]. J. Phys. Chem. B,2002,106:5659-5667.[21] BOLLINGER M V,JACOBSEN K W,NØRSKOV J K. Atomic and electronic structure of MoS2 nanoparticles[J]. Physical Review B,2003,67:085410.[22] RAYBAUD P,HAFNER J,KRESSE G,et al. Adsorption of thiophene on the catalytically active surface of MoS2:an ab initio local-density-functional study[J]. Physical Review Letters,1998,80:1481.[23] MA X,SCHOBERT H H. Molecular simulation on hydrodesulfurization of thiophenic compounds over MoS2 using ZINDO[J]. Journal of Molecular Catalysis A: Chemical,2000,160:409-427.[24] ORITA H,UCHIDA K,ITOH N. Adsorption of thiophene on an MoS2 cluster model catalyst: ab initio density functional study[J]. Journal of Molecular Catalysis A: Chemical,2003,193: 197-205.[25] PAUL J F,PAYEN E. Vacancy formation on MoS2 hydrodesulfurization catalyst: DFT study of the mechanism[J]. J. Phys. Chem. B,2003,107:4057-4064.[26] CRISTO S,PAUL J F,PAYEN E,et al. Theoretical study of benzothiophene hydrodesulfurization on MoS2[J]. Studies in Surface Science and Catalysis,1999,127:327-334.[27] LAURITSEN J V,BESENBACHER F. Atom-resolved scanning tunneling microscopy investigations of molecular adsorption on MoS2 and CoMoS hydrodesulfurization catalysts[J]. Journal of Catalysis,2015,328: 49-58.[28] LI Y P,Li A T,Li F F,et al. Application of HF etching in a HRTEM study of supported MoS2 catalysts[J]. Journal of Catalysis,2014,317:240-252.[29] DUCHET J,LAVALLEY J C,HOUSNI S,et al. Carbon monoxide and oxygen chemisorption and functionalities of sulphided Ni-W/Al2O3 hydrotreating catalysts[J]. Catalysis Today,1988,4:71-96.[30] SCHEFFER B,MANGNUS P J,MOULIJN J A. A temperature-programmed sulfiding study of NiO-WO3/Al2O3 catalysts[J]. Journal of Catalysis,1990,121:18-30.[31] YASUDA H,HIGO M,YOSHITOMI S,et al. Hydrogenation of tetralin over sulfided nickel-tungstate/alumina and nickel-molybdate/alumina catalysts[J]. Catalysis Today,1997,39:77-87.[32] KABE T,QIAN W,FUNATO A,et al. Hydrodesulfurization and hydrogenation on alumina-supported tungsten and nickel-promoted tungsten catalysts[J]. Physical Chemistry Chemical Physics,1999,1:921-927.[33] VISSENBERG M J,MEER Y,HENSEN E J M,et al. The effect of support interaction on the sulfidability of Al2O3- and TiO2-supported CoW and NiW hydrodesulfurization catalysts[J]. Journal of Catalysis,2001,198: 151-163.[34] KABE T,AOYAMA Y,WANG D,et al. Effects of H2S on hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene on alumina-supported NiMo and NiW catalysts[J]. Applied Catalysis,2001,209:237-247.[35] SUN M Y,NELSON A E,ADJAYE J. A DFT study of WS2,NiWS,and CoWS hydrotreating catalysts: energetics and surface structures[J]. Journal of Catalysis,2004,226:41-53.[36] LAURITSEN J V,HELVEG S,LÆGSGAARD E,et al. Atomic-scale structure of Co-Mo-S nanoclusters in hydrotreating catalysts[J]. Journal of Catalysis,2001,197:1-5.[37] KIBSGAARD J,TUXEN A,KNUDSEN K G,et al. Comparative atomic-scale analysis of promotional effects by late 3d-transition metals in MoS2 hydrotreating catalysts[J]. Journal of Catalysis,2010,272:195-203.[38] VILLARROEL M,BAEZA P,ESCALONA N,et al. MD//Mo and MD//W[MD = Mn,Fe,Co,Ni,Cu and Zn] promotion via spillover hydrogen in hydrodesulfurization[J]. Applied Catalysis A:General,2008,345:152-157.[39] ZHU Y Y,RAMASSE Q M,BRORSON M,et al. Location of Co and Ni promoter atoms in multi-layer MoS2 nanocrystals for hydrotreating catalysis[J]. Catalysis Today,2016,261:75-81.[40] FUJIKAWA T,KIMURA H,KIRIYAMA K,et al. Development of ultra-deep HDS catalyst for production of clean diesel fuels[J]. Catalysis Today,2006,111:188-193.[41] KALUŽA L,PALCHEVA R,SPOJAKINA A,et al. Hydrodesulfurization NiMo catalysts supported on Co,Ni and B modified Al2O3 from Anderson heteropolymolybdates[J]. Procedia Engineering,2012,42:873-884.[42] 黄婷婷,柴永明,商红岩,等. 络合剂对加氢精制催化剂影响的研究进展[J]. 化工进展,2014,33(4):914-920.[43] CHEN J J,MAUGE F,FALLAH J E,et al. IR spectroscopy evidence of MoS2 morphology change by citric acid addition on MoS2/Al2O3 catalysts - A step forward to differentiate the reactivity of M-edge and S-edge[J]. Journal of Catalysis,2014,320:170-179.[44] AIDA G A,GEOVANI L R,JORGE R,et al. On the role of triethylene glycol in the preparation of highly active Ni-Mo/Al2O3 hydrodesulfurization catalysts:a spectroscopic study[J]. Applied Catalysis B: Environmental,2015,166/167:560-567.[45] 宋华,郭云涛,李锋,等. 加氢精制催化剂载体的研究进展[J]. 石油化工,2010,39:941-948.[46] HUIRACHE-ACUÑA R,ZEPEDA T A,RIVERA-MUÑOZ E M,et al. Characterization and HDS performance of sulfided CoMoW catalysts supported on mesoporous Al-SBA-16 substrates[J]. Fuel,2015,149:149-161.[47] FERESHTEH R,TAKEHIKO S,Ali M R,et al. Ultradeep hydrodesulfurization of diesel fuels using highly efficient nanoalumina-supported catalysts:impact of support,phosphorus,and/or boron on the structure and catalytic activity[J]. Journal of Catalysis,2013,299:321-335.[48] SUNDARAMURTHY V,DALAI A K,ADJAYE J. Comparison of P-containing g-Al2O3 supported Ni-Mo bimetallic carbide,nitride and sulfide catalysts for HDN and HDS of gas oils derived from Athabasca bitumen[J]. Applied Catalysis A: General,2006,311:155-163.[49] NINO R,TAKESHI K,YASUAKI O. Effect of citric acid addition on the hydrodesulfurization activity of MoO3/Al2O3 catalysts[J]. Applied Catalysis A: General,2010,374:228-236.[50] DÍAZ DE LEÓN J N. Binary γ-Al2O3-α-Ga2O3 as supports of NiW catalysts for hydrocarbon sulfur removal[J]. Applied Catalysis B: Environmental,2016,181:524-533.[51] DÍAZ DE LEÓN J N,PICQUART M,MASSIN L,et al. Hydrodesulfurization of sulfur refractory compounds:effect of gallium as an additive in NiWS/γ-Al2O3 catalysts[J]. Journal of Molecular Catalysis A: Chemical,2012,363/364:311-321.[52] LUDĔK K,DANIELA G,ZDENĔK V,et al. High-activity MgO-supported CoMo hydrodesulfurization catalysts prepared by non-aqueous impregnation[J]. Applied Catalysis B: Environmental,2015,162:430-436.[53] SOLIS-CASADOS D A,ESCOBAR-ALARCÓN L,KLIMOVA T,et al. Catalytic performance of CoMo/Al2O3-MgO-Li(x) formulations in DBT hydrodesulfurization[J]. Catalysis Today,2016,271:35-44.[54] MAITY S K,RANA M S,SRINIVAS B N,et al. Characterization and evaluation of ZrO supported hydrotreating catalysts[J]. Journal of Molecular Catalysis A: Chemical,2000,153:121-127.[55] 王继元,堵文斌,陈韶辉,等. TiO2载体在柴油加氢脱硫中的应用进展[J]. 化工进展,2010,29(4): 654-658.[56] 汪怀远,朱友庄,赵景岩,等. TiO2载体特性对二苯并噻吩加氢脱硫性能的影响[J]. 化工学报,2013,64(7):2462-2467.[57] MARTIN C,MARTIN I,RIVES V,et al. Characterization and Fourier transform infrared spectroscopic study of surface acidity in NiMo/TiO2-Al2O3 catalysts[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,1995,51:1837-1845.[58] LIU C,ZHOU Z M,HUANG Y L,et al. Support effects on thiophene hydrodesulfurization over Co-Mo-Ni/AlO and Co-Mo-Ni/TiO-AlO catalysts[J]. Chinese Journal of Chemical Engineering,2014,22(4):383-391.[59] NIKULSHIN P A,SALNIKOV V A,MOZHAEV A V,et al. Relationship between active phase morphology and catalytic properties of the carbon-alumina-supported Co(Ni)Mo catalysts in HDS and HYD reactions[J]. Journal of Catalysis,2014,309: 386-396.[60] JIANG M H,WANG B W,LV J,et al. Effect of sulfidation temperature on the catalytic activity of MoO3/CeO2-Al2O3 toward sulfur-resistant methanation[J]. Applied Catalysis A: General,2013,466:224-232.[61] MURALI D G,SRINIVAS B N,RANA M S,et al. Mixed oxide supported hydrodesulfurization catalysts—a review[J]. Catalysis Today,2003,86:45-60.[62] POSTOLE G,BOSSELET F,BERGERET G,et al. On the promoting effect of H2S on the catalytic H2 production over Gd-doped ceria from CH4 /H2O mixtures for solid oxide fuel cell applications[J]. Journal of Catalysis,2014,316:149-163. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |