[1] Shechtman D,Blech I,Gratias D,et al. Metallic phase with long-range orientational order and no translational symmetry[J]. Physical Review Letters,1984,53(20):1951-1954. [2] Levine D,Steinhardt P J. Quasicrystals:A new class of ordered structures[J]. Physical Review Letters,1984,53(26):2477-2480. [3] 董闯. 准晶材料[M]. 北京:国防工业出版社,1998:2-10. [4] 陈波. 从“荒谬”到科学:准晶体的发现及研究进展[J]. 化学教学,2012(1):3-6. [5] 董闯,王英敏,羌建兵,等. 准晶:奇特而又平凡的晶体——2011年诺贝尔化学奖简介[J]. 自然杂志,2012,33(6):322-327. [6] Masumoto T,Inoue A. Ultrafine particle of quasi-crystalline aluminum alloy and process for producing aggregate thereof:EP,0645464(A2)[P]. 1995-03-29. [7] Jenks C J,Thiel P A. Comments on quasicrystals and their potential use as catalysts[J]. Journal of Molecular Catalysis A:Chemical,1998,131:301-306. [8] 闫月君,刘启斌,隋军,等. 甲醇水蒸气催化重整制氢技术研究进展[J]. 化工进展,2012,31(7):1468-1476. [9] Tsai A P,Yoshimura M. Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol[J]. Applied Catalysis A:General,2001,214:237-241. [10] Yoshimura M,Tsai A P. Quasicrystal application on catalyst[J]. Journal of Alloys and Compounds,2002,342:451-454. [11] Kameoka S,Tanabe T,Tsai A P. Al-Cu-Fe quasicrystals for steam reforming of methanol:A new form of copper catalysts[J]. Catalysis Today,2004,93-95:23-26. [12] Tanabe T,Kameoka S,Tsai A P. A novel catalyst fabricated from Al-Cu-Fe quasicrystal for steam reforming of methanol[J]. Catalysis Today,2006,111:153-157. [13] Tanabe T,Kameoka S,Sato F,et al. Cross-section TEM investigation of quasicrystalline catalysts prepared by aqueous NaOH leaching[J]. Philosophical Magazine,2007,87:3103-3108. [14] Tanabe T,Kameoka S,Tsai A P. Microstructure of leached Al-Cu-Fe quasicrystal with high catalytic performance for steam reforming of methanol[J]. Applied Catalysis A:General,2010,384:241-251. [15] Tanabe T,Kameoka S,Tsai A P. Evolution of microstructure induced by calcinations in leached Al-Cu-Fe quasicrystal and its effects on catalytic activity[J]. Journal of Materials Science,2011,46:2242-2250. [16] Ngoc B P,Geantet C,Aouine M,et al. Quasicrystal derived catalyst for steam reforming of methanol[J]. International Journal of Hydrogen Energy,2008,33:1000-1007. [17] Kajiwara K,Suzuki S,Sato H,et al. Chirality-selective synthesis of carbon nanotubes by catalytic-chemical vapor deposition using quasicrystal alloys as catalysts[J]. Zeitschrift Fur Kristallographie,2009,224:5-8. [18] Kajiwara K,Suzuki S,Matsui Y,et al. Characterization of quasicrystalline Al-Cu-Fe nanoclusters as catalysts for the synthesis of carbon nanotubes[J]. Journal of Physics:Conference Series,2010,226:012008. [19] Ngoc B P,Geantet C,Dalmon J A,et al. Quasicrystalline structures as catalyst precursors for hydrogenation reactions[J]. Catalysis Letter,2009,131:59-69. [20] Hao J,Cheng H,Wang H,et al. Oxidation of cyclohexane——A significant impact of stainless steel reactor wall[J]. Journal of Molecular Catalysis A:Chemical,2007,271:42-45. [21] Hao J,Liu B,Cheng H,et al. Cyclohexane oxidation on a novel Ti70Zr10Co20 catalyst containing quasicrystal[J]. Chemical Communication,2009:3460-3462. [22] Hao J,Wang J,Wang Q,et al. Catalytic oxidation of cyclohexane over Ti-Zr-Co catalysts[J]. Applied Catalysis A:General,2009,368:29-34. [23] 朱满,杨根仓,程素玲,等. Al72Ni12Co16准晶颗粒/铝基复合材料中的相转变及其力学性能[J]. 稀有金属材料与工程,2010,39:1604-1608. [24] 朱满,坚增运,常芳娥,等. 准晶增强铝基复合材料的微观组织及热膨胀行为[J]. 材料热处理技术,2011,40(22):80-83. [25] 杨永军. Al-Mn-Ti准晶中间合金的制备及在Al-25%Si中的应用[D]. 太原:太原理工大学,2010. [26] 康慧君. Mg3Zn6Y准晶颗粒增强Mg-8Gd-3Y复合材料组织和性能[D]. 哈尔滨:哈尔滨工业大学,2009. [27] Zhang J,Wang X,Zhang Z,et al. Effect of Mg-Zn-Nd spherical quasicrystals on microstructure and mechanical properties of ZK60 alloy[J]. Research & Development,2011,8(3):305-312. [28] 李小平,徐洲,于赟. 压力铸造(Al63Cu25Fe12)p/AZ91复合材料的研究[J]. 特种铸造及有色合金,2010,30(1):4-7. [29] 赵振伟. Mg-Zn-Nd准晶/AZ91复合材料的制备及性能研究[D]. 济南:济南大学,2013. [30] 马戎,董选普,陈树群,等. 准晶增强 Mg-0.6%Zr 合金的力学与阻尼性能[J]. 中国有色金属学报,2012,22(10):2705-2712. [31] Wang X,Li X,Zhang Z,et al. Preparation and wear resistance of Ti-Zr-Ni quasicrystal and polyamide composite materials[J]. Philosophical Magazine,2011,91(19-21):2929-2936. [32] Kothalkar A,Sharma A S,Biswas K,et al. Novel HDPE-quasicrystal composite fabricated for wear resistance[J]. Philosophical Magazine,2011,91(19-21):2944-2953. [33] Kothalkar A,Sharma A S,Tripathi G,et al. HDPE-quasicrystal composite:Fabrication and wear resistance[J]. Trans. Indian Inst. Met.,2012,65(1):13-20. [34] 袁华堂,王一菁,闫超,等. 新型稀土高性能储氢合金研究进展[J].化工进展,2012,31(2):253-258. [35] 刘万强,段潜,王立民. 准晶材料储氢研究[M]. 北京:国防工业出版社,2013:7-15. [36] Huang H,Liu T,Zhang Z,et al. Deuterium storage of Ti40Zr40Ni20 icosahedral quasicrystal[J]. International Journal of Hydrogen Energy,2012,37:15204-15209. [37] Ribeiro R M,Lemus L F,Santos dos D S. Hydrogen absorption study of Ti-based alloys performed by melt-spinning[J]. Materials Research,2013,16(3):679-682. [38] Takasaki A,Żywczak A,Gondek Ł,et al. Hydrogen storage characteristics of Ti45Zr38Ni17-xCox (x = 4,8) alloy and quasicrystal powders produced by mechanical alloying[J]. Journal of Alloys and Compounds,2013,580:S216-S218. [39] Ariga Y,Takasaki A,Kuroda C,et al. Electrochemical properties of Ti45-xZr30+xNi25 (x=-4,0,4) quasicrystal and amorphous electrodes produced by mechanical alloying[J]. Journal of Alloys and Compounds,2013,580:S251-S254. [40] Liu W,Zhang S,Wang L. Influence of heat treatment on electrochemical properties of Ti1.4V0.6Ni alloy electrode containing icosahedral quasicrystalline phase[J]. Transactions of Nonferrous Metals Society of China,2012,22(12):3034-3038. [41] Baster D,Takasaki A,Kuroda C,et al. Effect of mechanical milling on electrochemical properties of Ti45Zr38xNi17+x (x=0,8) quasicrystals produced by rapid-quenching[J]. Journal of Alloys and Compounds,2013,580:S238-S242. [42] 任敬川,张明军,刘万强. Ti45Zr35Ni17Cu3准晶电极的电化学性能[J]. 科技风,2012(13):48-50. [43] Liu W,Duan Q,Liang F,et al. Effect of Ce on electrochemical properties of the TiVNi quasicrystal material as an anode for Ni/MH batteries[J]. International Journal of Hydrogen Energy,2013,38(34):14810-14815. [44] Hu W,Yi J,Zheng B,et al. Icosahedral quasicrystalline (Ti1.6V0.4Ni)100-xScx alloys:Synthesis,structure and their application in Ni-MH batteries[J]. Journal of Solid State Chemistry,2013,202:1-5. [45] Liu W,Wang X,Hu W,et al. Electrochemical performance of TiVNi-quasicrystal and AB3-type hydrogen storage alloy composite materials[J]. International Journal of Hydrogen Energy,2011,36(1):616-620. [46] 刘万强,张姗姗,王立民. Ti 基准晶复相材料电极的电化学储氢性能[J]. 应用化学,2011,28(12):1402-1407. [47] Liu W,Zhang S,Wang L. Ti1.4V0.6Ni quasicrystal and its composites with xV18Ti15Zr18Ni29Cr5Co7Mn alloy used as negative electrode materials for the nickel-metal hydride (Ni–MH) secondary batteries[J]. Materials Letters,2012,79:122-124. [48] Liu W,Zhang S,Hu W,et al. Electrochemical hydrogen storage characteristics of TiVNi-quasicrystalline composite materials[J]. International Journal of Nanotechnology,2013,10:80-88. [49] Liu W,Liang F,Zhang S,et al. Electrochemical properties of Ti-based quasicrystal and ZrV2 Laves phase alloy composite materials as negative electrode for Ni-MH secondly batteries[J]. Journal of Non-Crystalline Solids,2012,358:1846-1849. |